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ABSTRACT  

Introduction: The Human Immunodeficiency Virus (HIV) causes Acquired Immune-Deficiency 

Syndrome (AIDS), a condition in which the immune system begins to decline, exposing infected 

individuals to life-threatening opportunistic infections. Though, cure or vaccine for HIV or AIDS 

does not currently exist, great strides have been made in treatment termed as Highly Active Anti-

Retroviral therapy (HAART) which effectively lowers the concentration of the virus in the body 

by increasing the immune system of the body (CD4
+
 T-cells). 

Objectives: A longitudinal retrospective based study was conducted between January 1999 and 

December 2004 E.C in Jimma University Specialized Hospital. The objectives of the study were 

to model and study the progression of HIV infection using longitudinally measured CD4 count 

for HIV positive patients following Highly Active Anti-Retroviral therapy (HAART) and to 

identify factors predicting the progression of HIV infection. 

Subjects and methods: A total of 1504 HIV positive individuals whose age 18 years and above 

were included in the study. The data was extracted from medical charts in a checklist format. 

Generalized linear mixed model and generalized estimating equations were used to model the 

progression of HIV infection. 

Results: On average CD4 count increase in a quadratic pattern over time. In addition, the 

progression of CD4 count depends on patient’s baseline demographic and clinical characteristics 

as well as GLMM fits the CD4 count data better than GEE.  

Conclusions:  On average CD4 count increases after patients initiated to the HAART program 

(the disease rate declines). No strong evidence suggesting that significant associations between 

progression of HIV infection and time by sex interaction. Progression of CD4 count differ by 

patients base line demographic and clinical characteristics.  
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                                 Glossary 

Acquired Immunodeficiency 

Syndrome (AIDS) 

 The most severe manifestation of infection with 

HIV. There are many opportunistic infections and 

cancers that constitute an AIDS diagnosis in the 

presence of HIV infection. 

Antiretroviral drug  Substance used to kill or inhibit the multiplication 

of retroviruses such as HIV. 

Antiretroviral therapy (ART)  Treatment regimens recommended by leading HIV 

experts to aggressively suppress viral replication 

and progress of HIV disease. The usual ART 

regimen combines three or more different drugs. 

ART side-effect  An unwanted effect caused by the administration of 

ART. Onset may be sudden or develop over time. 

Human immunodeficiency 

virus (HIV) 

 The retrovirus isolated and recognized as the 

etiologic (i.e, causing or contributing to the cause of 

the disease) agent of AIDS. 

WHO clinical stages of AIDS  Classification of the stages of HIV-associated 

clinical disease where stage1 indicates 

asymptomatic disease, stage2 indicates mild 

disease, stage3 indicates advanced disease and 

stage4 indicates severe disease. 

Ambulatory  An individual able to perform activities for daily 

living. 

Bed-ridden  An individual unable to perform activities of daily 

living. 

Working  An individual able to perform usual work in and out 

of the house, harvest, go to school for children, 

normal activities or playing. 
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CHAPTER ONE 

          1 INTRODUCTION 

The Human Immunodeficiency Virus (HIV) causes Acquired Immune-Deficiency Syndrome 

(AIDS), a condition in which the immune system begins to decline, exposing infected 

individuals to life-threatening opportunistic infections (Duncan et al, 1999). A cure or vaccine 

for HIV or AIDS does not currently exist. However, great strides have been made in treatment 

termed as Highly Active Anti-Retroviral Therapy (HAART). HAART consists of cocktails of at 

least two to three different classes of antiretroviral therapies and effectively lowers the 

concentration of the virus in the body by increasing the immune system which is called CD4
+
 T 

cells. In most developed countries, where these drugs are available, a large reduction in HIV-

associated morbidity and mortality has occurred to the extent that HIV/AIDS is now well 

thought-out a chronic condition.   

Conceptually, the progression of HIV infection from an asymptotic stage to acquired 

immunodeficiency syndrome, AIDS, is associated with a gradual decline in the total number of 

CD4
+
 T cells in the blood. Biologically, the decrease in the total number of CD4

+
 T cells also 

correlates an increase in the number of infected T cells and an increase in the amount of free 

virus in the blood (Venet et al., 1991). CD4
+
 T cells are the first reliable marker for disease 

progression since it gives an indication of how the immune system is doing and it is known to 

have a strong prognostic influence on progression to AIDS. These considerations motivate 

interests in the CD4
+
 T-cell as a useful intermediate response variable in the assessment of 

progression of HIV disease (Berzuini and Allemani Reviewed work, 2004). understanding these 

key markers do not only let health providers to monitor a patient's health, but also allows 

researchers to discover essential information regarding the mechanisms of the virus and the 

human immune system. Besides to this, it also allows researchers to develop HIV vaccines, new 

efficient treatments and preventative measures such as microbicides and pre-exposure 

prophylaxis (PrEP). Now a day, CD4
+
 T-cells over time is used for clinical management by 

repeatedly measuring it from individuals who tested HIV positive to monitor the progression of 

the disease.  A number of attempts have been made to determine the nature of progression of 

CD4
+
 T-cells after HIV infection. Eyster, Gail, and Ballard 1987 suggested that the progression 

of CD4
+
 cells follows a pattern of long period of slow decline followed by a rapid decline just 
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before onset of AIDS. Therefore, this needs further investigation for the question what happens 

about the progression after the start of HAART, which was examined in this study. A recent 

study showed HAART brings a significance improvement to CD4
+
 T-cells and provided further 

quantitative evidence about aspects of the therapy effect such as the changes in slope in CD4
+
 

cells count profile (Berzuini and Allemani, 2004).  Moreover, patients who had already 

experienced an AIDS-defining event at the point of initiating HAART were also at higher risk of 

developing a new event, irrespective of their CD4
+
 T-cells evolution during treatment. These 

patients might have a lower capacity to restore their immunity (Binquet et al. 2001).  

 Further study indicated that in the population model, both men and women had a significant 

change in CD4
+ 

cells count within 2 years after initiated to HAART. However, in the individual 

model, both men and women gained significant change in CD4
+
 T-cells after 7 years of HAART 

initiation (Watcharathanakij, 2007). Although evidence of a beneficial gain in CD4
+
 T-cells 

following administration of HAART in HIV-1 infection is available (Palella et al., 1998), several 

questions about treatment effect deserve further investigation. For example, does its effect show 

the same evolution in their immune system for all groups? What is the magnitude of such a 

change in slope? Thus this study evaluated the above questions and others. 

To study the progression of HIV infection, the CD4
+
 T-cells should be measured repeatedly per 

individual what is called longitudinal data. Since the measurements are correlated within 

individuals, the classical regression techniques couldn’t use rather the most flexible and powerful 

models were employed to handle such types of data. This includes generalized linear mixed 

model and generalized estimating equations which are capable of analyzing correlated and non 

normal data (i.e count in this case). Generalized linear mixed models (GLMM) (Breslow and 

Clayton, 1993) are obtained from generalized linear models (McCullagh and Nelder, 1989) by 

incorporating random effects into the linear predictors, and include the well known linear mixed 

models (LMMs) for normal responses (Laird and Ware, 1982) as a special case. These models 

are useful for modeling the dependence among response variables inherent in longitudinal or 

repeated measures studies, for accommodating over dispersion among binomial or Poisson 

responses, and for producing shrinkage estimators in multi-parameter problems. GLMMs are 

parametric, and are estimated using maximum likelihood theory or associated methods.  
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The Generalized Estimating Equations (GEE) approach projected by Liang and Zeger (1986) is a 

class of estimating equations which take into account the correlation arising due to a longitudinal 

study design, to increase efficiency of standard error estimates. As introduced by Wedderburn 

(1972), the GEE approach is based on quasi likelihood theory and can be used for continuous as 

well as for discrete outcome. The GEE method is a multivariate generalization of quasi-

likelihood, and this method is mainly proposed for marginal modeling with GLM.  It avoids the 

use of multivariate distribution by assuming a functional form for marginal distribution at each 

time, making it useful for non-Gaussian outcomes. The advantage of using the GEE method is 

that the solutions are consistent, i.e. the estimate of parameters are nearly efficient and 

asymptotically Gaussian, even when the time dependence is misspecified. GEEs are semi-

parametric because the parameter estimates are estimated parametrically and the variances are 

estimated non-parametrically. It also deals with the correlation caused by collecting numerous 

samples from each individual via adjusting the standard error to compensate for the lack of 

independence among samples.  
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1.1 Statement of the problem 

CD4
+
 T cells are cells of the immune system, which begin to deplete as the virus infects the 

body. These cells are considered as important biomarkers of disease progression for HIV 

infected individuals.  Given the disease direct relation to the immune system, CD4
+
 T cells are 

the primary indicator for prognostic information and a guide for antiretroviral therapy for HIV-

positive individuals. Mostly, we are interested to know the number of CD4
+
 T cells for a group 

of patients on their first visit in medical office to say something about the disease progress; 

however, since the number of CD4
+
 T cells at one time point is not very instructive to tell about 

the disease status; the change in the number of cells over time is a good indicator of disease 

condition. A study defined a normal person has a range of 500-1,100cells per mm
3
 CD4

+
 T-cells, 

and this number decreases over time for an infected person (Goedert, 1989).  

However, HAART fights against the progression of the disease by increasing the main body 

immune system or by decreasing RNA concentration (viral load) in the blood content. Even 

though, we can say HAART improves the immune system, there are many questions every one 

can raise about the numerical improvement. Among them how the CD4
+
 cells count involve over 

time after patients initiated to HAART or do a change has different pattern depending on the 

patient’s gender, educational level, and functional status e.t.c. In line with the above problem, 

there are many papers that have done about HIV biomarkers by using different regression 

techniques (Culshaw, 2006, Werner, 2009), but they have many drawbacks like accounting 

within and between subject variability by incorporating random effect in their models and also 

they did not use the most flexible and power full models to handle non normal data like GLMM 

and GEE. Besides to this, they do not put a clear explanation about the evolution of CD4
+
 T cells 

after the patients initiated to HAART which ultimately indicates how the progression of the 

disease going on.  

Generally, the basic research questions this study addressed were: 

 How the average progressions of CD4
+
 T-cells for HIV positive patients following 

HAART changes over time? Which indirectly tells us the disease progression? 

 Which statistical method is appropriate to model the evolution of CD4
+
 T cells by 

handling non normal and correlated data? 
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 What factors predict (influence) the evolution of CD4
+
 T cells? 

 Does the progression differ by patients demographic and clinical characteristics (sex, 

functional status, e.t.c)? 

 

1.2 Significance of the Study 

Even though, perfect eradication of Human Immunodeficiency Virus (HIV) from an individual is 

not currently possible, we can delay the progression of disease by using HAART which provide 

protection against the development of HIV-related complications by a long-term increase in 

CD4
+
 T-cells. Therefore this study helps:- 

 To understand the importance of attending HAART program by showing how much 

CD4
+
 T-cells increase over time so that the patient’s functional status and disease 

protective ability also increase or simply how much it delay disease progression. 

 To provide a confidence for those afraid people to check their blood and save their life by 

attending HAART properly. 

 To compare the different groups of patients how they respond to the drug simultaneously; 

so that it serve as a base for further study for the question what brings this variation and 

others. 
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CHAPTER-TWO 

2. LITRETURE 

2.1 The Human Immunodeficiency Virus (HIV) 

2.1.1 HIV and Human Body 

The Human Immunodeficiency Virus (HIV) is a retrovirus that infects bodily fluids in humans 

and remains in the immune cells within these fluids. HIV targets these immune cells in order to 

replicate by damaging them in the process. These immune cells, CD4
+
 T-cells and macrophages, 

play an important role in the body's immune system. The CD4
+
 T-cells are mature T helper cells, 

a type of white blood cell, which expresses a surface protein. CD4 T-cells cannot kill infected 

cells or invading pathogens without other immune cells, they cannot fight infection in the human 

body. Their purpose is to activate and direct other immune cells which play a major role in 

fighting of disease. Macrophages are another type of white blood cell within tissues and they are 

also known as `eater cells ´since they remove dead cell material and pathogens. They also 

stimulate other immune cells to respond to the pathogen and are vital to the regulation of 

immune responses.  

The CD4
+
 T-cells are the primary entry point for HIV into the host. The virus attaches itself to 

the CD4 receptor via its own surface protein when exposed to the CD4
+
 T-cells and makes use of 

the host cell to replicate itself and destroys it, impairing the functionality of the immune system. 

Hence that is why medical professionals rely on the CD4
+
 cells count to decide on the state of the 

immune system and to make a decision when the patient needs to be initiated on HIV treatment. 

Within a few weeks of infection; there is a high level of replication in the blood that can exceed 

ten million viral particles per milliliter of blood. This rapid replication of viral particles is 

followed by a decline of CD4
+
 T-cells in the body.  However, after a few weeks the body 

develops its own immune response to the HIV which stops the viral replication and the viral load 

declines and the number of CD4
+
 T-cells increase again to levels which are near normal. Thus 

infected individuals can remain asymptomatic for many years. However, it has been shown that 

during this time in which the person is feeling well, the body destroys up to a billion HIV 

particles and produces up to two billion CD4
+
 T-cells a day (Abdool Karim, 2005). The virus 
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continues to replicate, causing a gradual decline in CD4
+
 T-cells, which in turn makes the 

individual susceptible to various opportunistic diseases such as TB and pneumonia. 

  2.1.2 Treatment of HIV 

With the CD4
+
 T-cells at dangerously low levels, an infected person's immunity is compromised 

and this person becomes prone to get opportunistic infections, such as TB, Cryptococcus 

Meningitis, Kaposi's sarcoma, Peripheral Neuropathy, and the like. The best way to prevent these 

opportunistic infections is to improve the level of immune function through highly active 

antiretroviral therapy (HAART), a combination of three or four different antiretroviral (ARV) 

drugs. When ARVs were first developed and used to treat HIV, only one drug was prescribed as 

treatment. Later, as different ARVs were developed and the medical community realized that 

patients were developing resistance to these ARVs, they started prescribing three or four 

concurrent ARVs as treatment and found this to be more effective in controlling HIV.  

HAART has now become standard treatment and its main aim is to delay or prevent the 

progression to AIDS and death of those infected with HIV by suppressing and slowing down the 

replication of the virus. HAART maintains the reproductive number (Anderson and May, 1991) 

of the viral population below a threshold that cannot allow the viral population to increase and 

dominate. The World Health Organization (WHO) has recommended guidelines as when to start 

antiretroviral therapy (Panel on Antiretroviral Guidelines for Adults and Adolescents, 2008). 

Unfortunately, if a person is at an advanced stage of HIV/AIDS, when the CD4
+
 T-cells is less 

than 50cells per cubic milliliter, then starting therapy would not be always successful. Once an 

HIV infected person initiates to HAART, he or she has to take it for the rest of his or her life in 

order to control the virus. There are different opinions on when HAART therapy should be 

initiated. Since the therapy will have to be continued for the rest of the infected person's life and 

thus many years, it is not advisable to start HAART immediately after testing HIV positive. 

Another reason for postponing treatment until it is absolutely necessary is that most of the ARV 

drugs have side-effects. There are some official guidelines regarding the initiation of HAART 

therapy. CD4
+
 T-cells is used to make a decision as to when to begin HAART. In particular, the 

US Department of Health and Human Services (Panel on Antiretroviral Guidelines for Adults 

and Adolescents, 2008) recommend that HAART should be started if someone has an AIDS-

defining illness or if their CD4
+
 T-cells falls below 350cell per cubic milliliter. They also state 
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that certain groups of people should be initiated on HAART regardless of their CD4
+
 T-cells, for 

example pregnant women, patients with HIV-related nephropathy (kidney disease) or patients 

co-infected with hepatitis B virus.  

Guidelines for initiating therapy can differ between the developed and developing countries.  In 

South Africa, the criteria for initiating HAART, according to the National Department of Health, 

is that a person must either have a CD4
+
 T-cells under 200 cells per cubic milliliter or a WHO 

stage IV, regardless of the CD4
+
 T-cells  (National Department of Health South Africa, 2004). In 

1990 the World Health Organization (WHO) developed a staging system for people infected 

with HIV. This system uses conditions and infections to classify someone with HIV into a 

particular stage, ranging from stage I to IV. The staging increases as the severity of the diseases 

increases with stage IV corresponding to full-blown AIDS (WHO, 1990). Since the introduction 

of HAART, there has been dramatic decrease in rates of mortality due to HIV/AIDS. It has 

changed the perceptions of the HIV/AIDS epidemic from it being viewed as a death sentence to 

be seen as just a manageable chronic illness. Although HAART is able to control viral 

replication, it cannot completely eradicate HIV which persists in the host cells. This storage of 

infected cells allows the virus to replicate when HAART is discontinued or when the therapy can 

no longer suppress the virus. 

           2.1.3 HIV INFECTION 

HIV is among the highly infectious and pathogenic diseases with a high mortality rate. The 

spread of HIV is influenced by several individual based epidemiological factors such as age, 

gender, mobility, sexual partner profile and the presence of sexually transmitted infections 

(STI).There is a continuing, rising trend nationally in HIV infection levels among pregnant 

women attending public antenatal clinics. In order to analyze the prognosis of patients infected 

with HIV, it is possible to use the CD4
+
 T-cells. These cells are a sub-group of lymphocytes (a 

type of white blood cell or leukocyte) that play an important role in establishing and maximizing 

the capabilities of the immune system. CD4
+
 T-cells provided the first reliable marker of disease 

progression (AbdoolKarim, 2005) as compared to other possible markers and it is one of the 

markers most closely correlated with the stage of HIV infection (Prins et al., 1999). The CD4
+
 T-

cells, a main disease marker is repeatedly measured among those individuals who test HIV 

positive to monitor the progression of the disease since it is known that HIV/AIDS is a long 
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wave event. It follows from this that longitudinal studies are needed to establish the effects on 

individuals or on group over time.  

Diggle et al. (2002) reported that an uninfected individual has around 1100 cells per cubic 

milliliter of blood. The factors affecting the rate of change are critical. These factors can be 

grouped broadly into socio-demographic and biomedical factors. The purpose of this study is to 

describe the evolution of this HIV infection using CD4
+
 T-cells in a cohort of acutely infected 

patients who were following up longitudinally over time and understand factors that predict the 

change in CD4
+
 T-cells.  Strategies to prevent HIV/AIDS should include education to promote 

delayed onset of sexual activity since the HIV/AIDS is quite prevalent amongst women as 

compared to men in the age group 15-24 years. For social, cultural and economic reasons men 

are usually in a stronger position in their relationships with women and this gives them more 

control in deciding when to have sex as well as whether or not to use the condom.  

Someone who is on HAART or on other immune boosting medication we expect their CD4
+
 T-

cells increase and their viral load to decrease. However, individual responses are quite variable 

and the correlation between CD4
+
 T-cells responses and viral load in some individual is very 

weak (Abdoolkarim, 2005). Higher CD4
+
 T-cells imply a strong immune system while low CD4

+
 

T-cells imply a weak immune system. However CD4
+
 T-cells do not always reflect how 

someone with HIV feels and functions; there could be other latent factors which influence the 

dynamics of the disease.  

  2.2 Models for HIV infection                                                                                  

Before the start of HAART, modeling the progression of HIV disease using the principal bio 

markers was not common, this is because knowing this biomarker is helpful only to provide a 

good care to patients by adjusting their functional status with the appropriate drug. However, 

after HAART was introduced, modeling of this bio markers became usual as the model helps to 

know how the disease progress through time so that one can know easily when the patient should 

start the medication, which type of the drug will appropriate and what is the rate of the disease 

progression as a result any one can predict what faces to the next time. In relation to this, by 

using the mixed model a cohort of HIV-1 infected patients being treated with protease inhibitors 

showed that the relation between changes in CD4
+
 T-cells and risk of opportunistic infection 
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varied over time (Binquet et al. 2001). It also recommended that statistically significant 

interaction between CD4
+
 change and time is an additional factor in favor of a delayed but at 

least partial immune recovery. On the other hand fully Bayesian analysis of the progression of 

HIV infection using longitudinal CD4 T-cell numbers with a high-dimensional hierarchical mode 

investigated that these CD4 T-cell numbers simply do not carry all that much information about 

the progression of the disease (Lange et al. 1992). 

Different characteristics of the individuals like age, base line clinical stage, plasma HIV RNA 

and time since HIV diagnosis are recognized predictors of progression of HIV infections    

(Ville’s et al. 2007). In addition Bayeh et al. (2009) identified age, sex, educational levels and 

income levels of HIV patients as predictors of CD4 count progression after initiated to ART. The 

study found that at base line female’s average CD4 count is greater than males and the average 

CD4 count through time increase. 

2.2.1 Generalized linear mixed models (GLMMs) approach 

Generalized linear mixed models (GLMMs) (Breslow and Clayton, 1993) are obtained from 

generalized linear models (GLMs) (McCullagh and Nelder.1986) by incorporating random 

effects in to the linear predictors, and include the well known linear mixed models (LMMs) for 

normal responses (Laird and Ware ,1982) as a special case. These models are useful for 

modeling the dependence among response variables inherent in longitudinal or repeated 

measures studies, for accommodating over dispersion among binomial or Poisson responses, and 

for producing shrinkage estimators in multi-parameter problems. Due to the wide range of 

applications of GLMMs, these models have received substantial attention during the last decade 

and are available in the major software packages. The computational burden associated with high 

dimensional numerical integration has limited past studies of GLMMs to the case of simplified 

models (e.g., random intercept models), to tractable random effects distributions (e.g., the 

Gaussian and conjugate distributions such as the beta-binomial and negative binomial models), 

or to conditional inference for the regression coefficients, conditioning on the random effects 

(Zeger and Karim, 1991). 

A variety of novel approaches have been proposed to overcome the computational difficulties, 

with the goal to improve inference and estimation procedures for the fixed effects in GLMMs. 
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These include Gibbs sampling (Zeger and Karim, 1991), penalized quasi-likelihood and marginal 

quasi-likelihood (Breslow and Clayton, 1993), pseudo-likelihood based on approximate marginal 

models (Wolfinger and O’Connell, 1993), and maximum likelihood with Monte Carlo versions 

of EM, Newton-Raphson and simulated maximum likelihood algorithms (McCulloch, 1997), 

among many others (Jiang, 1998). These approaches typically require Gaussian distribution 

assumptions for the random effects. Methods for non-normal random effects are less common 

and limited to specialized cases (Magder and Zeger, 1996; Lee and Nelder, 1996, 2001; 

Gamerman, 1997). 

One approach to account for the within subject association is via the introduction of random 

effects in generalized linear models. This leads to a class of models known as generalized linear 

mixed models (GLMMs). GLMMs are an extension to GLMs that includes random effects in the 

linear predictor, giving an explicit probability model that explains the origin of the correlations. 

The resulting subject-specific parameter estimates are suitable when the focus is on estimating 

the effect of changing one or more components of the predictor on a given individual. In 

statistics, a generalized linear mixed model (GLMM) is a particular type of mixed model. Fitting 

such models by maximum likelihood involves integrating over these random effects. 

2.2.2 Generalized Estimating Equation (GEE) approach 

When interest is in the first-order marginal parameters, McCullough and Nelder (1989) have 

shown that a full likelihood procedure can be replaced by quasi-likelihood based methods. 

Wedderburn (1974) shows the likelihood and quasi-likelihood theories coincide for exponential 

families and that the quasi-likelihood estimating equations provide consistent estimates of 

regression parameter. In any generalized linear model, even for choices of link and variance 

functions that do not correspond to exponential families. Consequently, Liang and Zeger (1986) 

proposed the method of generalized estimating equations (GEE) as an extension of GLM to 

accommodate correlated data using quasi-likelihood approach. Rather than assuming a particular 

distribution for the response, GEE method requires a correct specification of the mean as well as 

how the variance depends on the mean. One of the desirable properties of the GEE method is that 

it yields consistent and asymptotically normal solutions even with the misspecification of the 

covariance structure (Liang and Zeger, 1986; Davis, 2002).  
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Over the past 20 years, the GEE approach has proven to be an exceedingly useful method for the 

analysis of longitudinal data, especially when the response variable is discrete (e.g., binary, 

ordinal, or a count). Correlated data are modeled using the same link function and linear 

predictor setup (systematic component) as the independence case. The random component is 

described by the same variance functions as in the independence case, but the covariance 

structure of the correlated measurements must also be modeled. The focus is on estimating the 

average response over the population (“population-averaged effects) rather than the regression 

parameters that would enable prediction of the effect of changing one or more components of X 

on a given individual 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 | P a g e  
 

CHAPTER THREE     

                  

3 Objectives of the study 

 3.1 General objective: 

The general objective of this paper is to model and study the progression of HIV infection using 

longitudinally measured CD4
+
 T- cells for HIV positive patients following HAART in Jimma 

University Specialized Hospital.  

3.2 Specific objectives  

 To explore the general average progression of CD4
+
 T cells over time 

 To model the progression of  CD4
+
 T-cells using GLMM and GEE and to compare  them  

 To identify factors which predict the progression of  CD4
+
 T- cells (disease progression) 

 To compare the progression of CD4
+
 T -cells or the progression of HIV infection 

between groups (i.e sex, educational level, who stage e.t.c). 
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CHAPTER FOUR 

4. Data and Methodology 

4.1 Data source and its description 

This study used the latest data from medical charts of HIV positive patients initiated to HAART 

from 2007-2011 in Jimma University Specialized Hospital located in south west of Ethiopia in 

Jimma town. All patients who are 18 and above years of age and measured their CD4
+
 T cells at 

least once constitutes the study population. The data consists of 1504 individuals with a 

minimum of one and maximum of ten measurements per individual. Originally, the data was 

recorded by ICAP (International Center for AIDS care and treatment Program) incollabration 

with Jimma University Specialized Hospital from voluntary as well as medically ordered 

individuals directly to provide health care service for them. It was recorded on medical charts by 

assigning an identification number per individual which helps to find the patients profile easily 

during his/her next visit time. By taking a legal permission letter from the statistics department, 

the data was collected via extracting the required variables from medical charts in a check list 

format. 

4.2 Study variables 

Dependent variable: CD4
+
 T- cells (CD4 count) for each individual measured in  

                                          Every six    Month interval  

Independent variables: Age, Weight, Sex, Functional status, Educational level,  

                                         WHO stage, Time (in Month) 
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Table4.1: Variable description and coding for ART data taken at Jimma University Specialized    

Hospital from 2007 –2011  

Variable                 Coding 

Age Age of patients at the start of ART in years 

Weight Weight of patients at the start of ART in Kg 

Sex Male = 1, Female = 0 

Educational level No Education = 0, Primary = 1, secondary = 2,tertiary = 3 

WHO stage Stage I = 1, Stage II = 2, Stage III = 3, Stage Iv = 4 

Functional status Working = 0, Ambulatory = 1, Bed ridden = 2 

Time Observation time of CD4
+
 T cells (Every six months) 

CD4
+
 T cells number of cells per cubic millimeter measured for each individual in every six 

month 

 

                         4.3 Statistical Analysis technique 

4.3.1 Exploratory data analysis 

It is a technique to visualize the patterns of data relative to research interests. Since exploratory 

data analysis can serve to discover as much of the information regarding raw data as possible, 

plotting individual curves to carefully examine the data should be performed first before any 

formal model fitting is carried out. Thus, this study assessed the nature of the data by exploring 

individual profiles, the average evolution, the variance function, the correlation structure. 

I. Exploring the individual profile: To explore the individual profile, plot of the response with 

time is used to show whether there is a noticeable pattern common to most subjects. These 

individual profiles can also provide some information on within and between subject variability.  

II. Exploring the Mean Structure:  

The major purpose of exploring the mean structure is to choose the fixed effects for the model. 

To explore the overall mean, we plot the response variable against time including individual and 

overall mean profiles. In line with the overall mean, the possible differences between the groups 

were studied by plotting the mean of each group separately with the same figure.  

III. Exploring the Variance structure: To explore the variance structure of the data three plots 

were used. The first one shows the average evolution of the variance as a function of time and 

the second produces the individual profile plots of the data which shows whether there is a 
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considerable within and between subject variability. The third is the interaction plot which is 

used to plot the variance functions separated for different groups (sex: male, female e.t.c) as a 

function of time. 

IV. Exploring the Correlation Structure: It helps to describe how measurements within an 

individual correlate. Pair-wise scatter plots matrix was employed for exploring the correlation 

structure. 

             4.3.2 The statistical Models 

4.3.2.1 Generalized Estimating Equations (GEE) 

GEE were introduced by Liang and zeger (1986) as a method of dealing with correlated data 

when, except for the correlation among responses, the data can be modeled as a generalized 

linear model. Unlike general linear mixed models, models using the GEE method are marginal 

models that only estimate population average regression coefficients. These models are not 

flexible enough to specify heterogeneity of the covariance structures. However, fitting models 

using the GEE approach has been shown to give consistent estimators of the regression 

coefficients and their variances under weak assumptions about the actual correlation among a 

subject’s observations. A GEE is simply the equation you solve to calculate the parameter 

estimates and it accommodates the correlation structure of the repeated measurements. It needs 

to specify only the relationships between the response mean and covariates and between the 

response mean and variance. GEE has a “working” correlation R of the repeated measurements. 

This working correlation matrix is of size n×n because one assumes that there is a fixed number 

of time-points n that subjects are measured. At a given subject does not have to be measured at 

all n time-points. Each individual’s correlation matrix Ri is of size ni×ni with appropriate rows 

and columns removed if ni < n. It is generally recommended that choice of R should be 

consistent with the observed correlations.  With GEE the relationships between the variables of 

the model at different time-points are analyzed simultaneously. 

The marginal mean model: We assumed that N patients measured repeatedly through time and 

let  denote the response for i
th

 patient at j
th

 time.  is count response variable with non 

negative integer values. Each follows a poisson distribution and the mean is related to X by a 

log link function. 

  g( ) = Log( ) = β 
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Where, 

 : The mean of  , which is related to the covariates of  by link function 

: A px1 vector of covariates 

β:  A px1 vector of unknown regression coefficients of X, and 

g(.): Log link function as is count. 

Method of estimation and statistical inference: The GEE approach is appealing for analysis of 

non normal data because of its computational simplicity compared to the maximum likelihood 

based approaches. However, because there is no likelihood function, likelihood based methods 

are not available for testing fit, comparing models and conducting inference about parameters 

rather a quasi-likelihood method of estimation is used. Instead inference can only use Wald 

statistics constructed with asymptotic normality of the estimators together with their estimated 

covariance matrix. Moreover, even though GEE estimates are consistent with misspecification of 

the covariance structure, it is important to choose the covariance structure that closely 

approximates the true underlying one for greater efficiency. 

Working correlation structures: Because the repeated observations within one subject are not 

independent of each other, a correction must be made for these within-subject correlations. With 

GEE, this correction is carried out by assuming a priori certain ‘working’ correlation structure 

for the repeated measurements of the outcome variable Y. Before carrying out a GEE analysis, 

the within-subject correlation structure was chosen based on the results of exploring correlation 

structure of the observed data. Accordingly two propose working correlations were compared. 

I. Independent structure: This is the correlation that GEE model assumes by default. With this 

structure the correlations between subsequent measurements are assumed to be zero or 

measurements are independent to each other within individuals.  

II. Exchangeable correlation structure (compound symmetry): it assumes the correlations 

between subsequent measurements are assumed to be the same, irrespective of the length of the 

time interval.  

Generally, assuming no missing data, the J x J covariance matrix for y is modeled as: 

 ………………..1.2 



18 | P a g e  
 

Where Φ is a glm dispersion parameter which is assumed 1 for count data, Ai is a diagonal 

matrix of variance functions, and  is the working correlation matrix of Y. 

Generalized estimating equations (GEEs) can be used to model correlated data with the variance 

covariance matrix V by iteratively solving the quasi- score equations. 

The score function of a GEE for  has the form 

                      ……………………..1.3 

Where   is the fitted mean, which is given by g =  for covariates x = , , . . . ,  

and regression parameters  = ,  

 Starting  as the identity matrix and Φ=1, the parameters are estimated by solving equations 

as follows. 

i.e in normal case   

  

  

 

 

 

Then  

1.  

 

2. =N   

More generally, because solution only depends on the mean and variance of y, these are quasi-

likelihood estimates. The estimates from a GEE analysis are robust to miss-specification of the 

covariance matrix (Liang & Zeger, 1986), so, the regression parameter estimates are consistent 

even for independent covariance matrix. 
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Upon convergence, in order to perform hypothesis tests and construct confidence intervals, it is 

of interest to obtain standard errors associated with the estimated regression coefficients. These 

standard errors are obtained as the square root of the diagonal elements of the matrix V  . The 

GEE provides two versions of these estimates. 

1. Naive or "model-based", 

 

2. Robust or “empirical” 

 

Where, 

 =  

=  

 

Here,  denotes  

In the more general case, the robust or “sandwich” estimator, which is due to Royal1 (1986), 

provides a consistent estimator of  (even if the working correlation structure  is not the 

true correlation of yi. 

  

Variable selection technique: In both models, to select significant variables, first the main 

effect and main effect by time interaction will be incorporated to the initial candidate model. 

After that, avoid non significant variables one by one starting from the most non significant 

terms and finally the two models are compared using generalized Wald test for GEE and 

likelihood ratio test for GLMM (Patetta, 2002) or simply backward selection technique. 

4.3.2.1.1 Model comparison technique  

Quasi-information criterion: Although the AIC can be used in association with mixed models, 

it cannot be used with GEEs to select either the optimal set of explanatory variables or 

correlation matrix, because GEE estimation is based on the quasi-likelihood rather than the 

maximum likelihood. The quasi-likelihood counterpart to the AIC is the QIC, or the “quasi-

likelihood under the independence model information criterion” (Pan, 2001). The QIC was 
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derived from the AIC and is conceptually similar. The quasi-likelihood function takes the 

following form (McCullagh and Nelder, 1989) 

  , Where = E(y) and var(y) = v( ) with  being the dispersion parameter. 

An equation for the QIC is  

 

Where I represent the independent correlation structure and R is the specified working 

correlation structure. The p-dimensional matrices  are variance estimators of the 

regression coefficients under the correlation structure I and R respectively. The QIC value is 

computed based on the quasi-likelihood estimate  and is used to select the appropriate working 

correlation structure for the model. However, Hin and Wang (2009) proposed using half of the 

second term in QIC is appropriate for the selection of the working correlation structure in GEE. 

This statistic is called the Correlation Information Criterion (CIC). 

 

The first term in QIC, which is based on the quasi-likelihood, is free from both the working 

correlation structure as well as the true correlation structure, so it would not be informative in the 

selection of the covariance structure. Moreover, the form of quasi-likelihood is constructed under 

the assumption of the independent observations, although the parameters are estimated under the 

hypothesized working correlation structure. On the other hand, the second term in QIC contains 

information about the hypothesized correlation structure via the sandwich variance estimator. 

Even though the second term plays a role as a penalty term for mean model variable selection, 

the QIC is more heavily impacted by the first term. Hence, QIC is not particularly sensitive 

measure to use for selection of working correlation structure. Due to the above, Hin and Wang 

(2009) and Wang and Hin (2010) shown the performance of CIC to be much better than the QIC 

in selecting the correct correlation structure. Thus, this paper used CIC to compare two models 

with different working correlation structures. 

In addition the two models with exchangeable and independence working correlation structures 

were compared via their naïve and robust standard error estimates and the one with the closest 

naïve and robust standard error estimates was preferred. The best correlation is usually selected 
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first and is done based on the full model with all the explanatory variables (Hardin and Hilbe, 

2003) 

The generalized Wald test: is used to compare models with different subsets of the regression 

parameters. That is, one can use the generalized Wald tests to test the joint null hypothesis that a 

set of regression parameters s are equal to zero (Hedeker and Gibbons 2006). In general, for 

any matrix L a test for hypothesis can be written as follows 

, Where L is a Pxp indicator matrix of ones and zeros. 

Here, p is equal to the number of parameters in the full model (including the intercept) and q 

equals the number of parameters in the generalized Wald test (that is, the difference in parametrs 

between the full and reduced model). The Wald statistic is a quadratic form defined as follows 

   

And is distributed as with q degrees of freedom under the null hypothesis 

4.3.2.2 Generalized linear mixed model (GLMM) 

An alternative way to fit a longitudinal model to non-normal response data is to fit a generalized 

linear mixed model. These models are similar to the ones fit in GEE because the normality 

assumption regarding the error terms is relaxed. Some of the error distributions supported by 

generalized linear mixed models include the binomial, Poisson, gamma e.t.c. These models also 

support a large variety of link functions, which include the logit, log, and reciprocal. The type of 

response variable determines the distribution and link function for the model. Since the response 

variable for this paper is discrete count data the natural log link function was used. However, 

unlike the models fit in GEE, generalized linear mixed models have the flexibility to specify 

random effects and also to generate subject-specific parameter estimates. let  denote the count 

response of CD4 count for i
th

 patient at j
th
 time, taking positive integers. The link function can 

be: 

 ~ Poisson ( ),    log ( )=    

Where  

: Covariates of the i
th
 patient at j

th 
time, 

  :  Regression coefficients of  
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:  The mean of , which is related to the covariates of  by link function, and 

:  The covariates of the random effects of the i
th
 subject at j

th
 time  

: The random effect which are assumed to be multivariate normal distribution having mean 

vector 0 and covariance matrix G, i.e.  

Assumptions for GLMM are:- 

1. The conditional distribution of  given  follows a distribution from the exponential family    

with density f(  | , )  

) 

 

Where,  represents conditional means not marginal 

), or   

Where g(.) is the link function  (.) is the inverse of the link function) and v(.) is the variance 

function. Vector X and Z have p and q dimension respectively. 

2. Given , the repeated measurements  . . .  are independent. 

3. The are independent and identically distributed with density function f( ;G). Commonly, 

f( ;G) is a normal distribution with zero mean and variance matrix G(i.e ).and the 

error term is normally and independently distributed due to(2) (i.e  ~N(0, ) ). Correlation 

amongst observations from a unit,  , . . .  arises from their sharing unobservable variables 

. The random effect model is most useful when the objective is to make inference about 

individuals rather than population averages. 

Method of estimation and statistical inference: Maximum likelihood (ML) by Laplace 

approximation technique is used to estimate the parameters. ML estimates standard deviations of 

the random effects assume the fixed-effect estimates are correct. The following derivations are 

done with respect to ML. such likelihood may involve high-dimensional integrals that cannot be 

evaluated analytically so that much software are able to solve such complex manipulation using 

iteration technique. The likelihood of the data expressed as a function of unknown parameters is 
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It is the integral over the unobserved random effects of the joint distribution of the data and 

random effects. With Gaussian data, the integral has a closed form solution and relatively simple 

methods exist for maximizing the likelihood or restricted likelihood. With non-linear models, 

numerical techniques are needed. We consider the random effects as no missing data so that the 

‘complete’ data for a unit is ( , ). Denote L= log (L) and the score 

equation for  and b are 

 

The score equation for G is  

 

Where, G is variance covariance matrix for random effect. Hereby denotes the unknown 

parameter in the density. These are solved using the E-M algorithm. In the estimation step, the 

expectations are evaluated using current parameter values and this may involve multivariable 

integration of large dimension. This will usually be done by Monte-Carlo integration. 

4.3.2.2.1 Model comparison technique for GLMM 

The primary objective of model comparison is to choose the simplest model that provides the 

best fit to the data. This study used Information criteria followed by Likelihood ratio test to 

select the best model. 

Akaike's information criterion (AIC) is a measure of goodness of fit of an estimated statistical 

model. It is not a test on the model in the sense of hypothesis testing; rather it is a tool for model 

selection. The AIC penalizes the likelihood by the number of covariance parameters in the 

model, therefore  

AIC= -2Log (L) +2p 

 Where, L is the maximized value likelihood function for the estimated model and p is the 

number of parameters in the model. The model with the lowest AIC value is preferred. 

Likelihood ratio test:  it is constructed by comparing the maximized log likelihoods for the full 

and reduced models respectively and the test statistic is  
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Defined as  

Where, and  are respective maximum likelihood estimates which maximize the 

likelihood functions of the reduced and full model. The asymptotic null distribution of the LR 

test statistic is a chi-square distribution with degrees of freedom equal to the difference between 

the numbers of parameters in the two models.  

4.3.2.2 Model Checking Technique  

In GLMM, it is assumed that the random effects are normally distributed and uncorrelated with 

the error term. Residual plots can be used visually to check normality of these effects and to 

identify any outlying effect categories. Examining the plot of the standardized residuals versus 

fitted values by any covariates of interest can give a better feeling (Molenberghs,2008). The 

assumption of normality for the within-group error was assessed with the normal probability plot 

of the residuals by covariates.  Similarly, Normality of the random effects is assessed using 

Normal Plot of each random effect. Normal plot of estimated random effects helps for checking 

marginal normality and to identify outliers. Generally the data was analyzed using R software 

version 2.15.1 

4.3.3 Ethical considerations 

A permission to undertake the study has been obtained from Jimma University College of natural 

science through Ethical review board and official letter of co-operation was written by the 

department of statistics to Jimma University Specialized Hospital. 
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CHAPTER FIVE 

5. RESULT AND DISCUSSION 

                5.1 RESULTS 

A total of 1504 HIV positive patients were included to this study. The baseline characteristics of 

patients are displayed in table2 below.  Among these patients, more than half 962 (64%) of them 

were females and 542(36%) were males. About 351(23%) patients were WHO stage I, 529(35%) 

stage II, 516(34%) stage III and 108(8%) stage IV. 534(36%) of patients had an education at 

primary level, 507(34%) were secondary, 158(10%) were at college or university level and 

305(20%) patients had no education (illiterate). Of the patients, 1032(69%) had good functional 

status (were “working” classification), 409(27%) were ambulatory and only 63(4%) were 

bedridden. 

Table 5.1: Baseline demographic and clinical characteristics of ART data taken at Jimma 

University specialized Hospital from 2007 –2011 

Characteristics                Category                           n (%)  

 

Sex  Male 

Female
*
 

542(36%) 

962(64%) 

WHO stage I* 

II 

III 

IV 

351(23%) 

529(35%) 

516(34%) 

108(8%) 

Educational level No education* 

primary 

secondary 

tertiary 

305(20%) 

534(36%) 

507(34%) 

158(10%) 

Functional status Working* 

ambulatory 

bedridden 

1032(69%) 

409(27%) 

  63(4%) 

* indicates the reference group for each characteristic 
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                                             5.1.1 Exploratory analysis 

 5.1.1.1 Exploring the individual profile over time 

The individual profile plot for a sample of 20 subjects is given in figure 5.1. From the actual 

profile plot, variability of measurements between individuals seems lower at base line as 

compared to the follow up time and almost all of them gain CD4 count over time.   

 

Figure 5.1: a) Individual profile plot for the actual CD4 count and b) Individual profile plot for 

transformed CD4 count taken at Jimma University Specialized Hospital from 2007 –2011 

5.1.1.2 Exploring the mean structure 

To explore the mean structure, both the actual and transformed CD4 count mean profiles were 

considered. 

Table 5.2: The mean, median of patients CD4 count at each visit time taken at Jimma University 

Specialized Hospital from 2007 –2011 

Time(month)     0   6   12   18   24   30  36   42  48 54 

Mean(CD4) 207.0 291.7 342.5 378.9 403.1 423.7 437.6 503.4 418 465.8 

Mean(log(CD4)) 4.96 5.47 5.67 5.80 5.85 5.90 5.94 6.07 5.93 6.06 

median(CD4) 162 262 312 337 360 389 413 476.5 363 413 
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As shown in table 5.2, the actual and log transformed mean and median of the observed CD4 

count increases over time. This means after patients initiated to ART, their CD4 count increases 

due to the positive effect of therapy.  

 

Figure 5.2: a) The average progression of actual CD4 count for and b) The average progression 

of transformed CD4 count taken at Jimma University Specialized Hospital from  

          2007 –2011 

In figure 5.2, it seems that the mean CD4 count evolution shows a quadratic pattern for both 

actual and transformed CD4 count over time. It indicates the patient’s immune system increase 

or the progression of the disease declines over time (i.e because CD4 count and HIV infection 

are negatively correlated).  
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Figure 5.3: a) the mean profile of the actual CD4 count by sex and b) the mean profile of 

transformed CD4 count by sex taken at Jimma University Specialized Hospital  

           from 2007 –2011 

The average evolution for the actual and log transformed CD4 count by sex is presented in figure 

5.3, where females appear to be higher than males until around 42 months. It also shows both 

males and females have increasing CD4 count in a quadratic pattern over time which supports 

the results of the general average evolution given in figure2.                                                                                                                                                            

5.1.1.3 Exploring the variance structure 

Table 5.3: The actual and transformed Variance of CD4 count at each visit time taken at Jimma 

University Specialized Hospital from 2007 –2011 

Time(month) 0 6 12 18 24 30 36 42 48 54 

Variance(CD4) 37752.5 31755 36100 37597.2 43764.6 43388.9 51076 76176 75625 35532 

Variance(log(CD4))  0.923 0.513 0.416 0.301 0.396 0.400 0.356 0.337 0.241 0.187 
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Figure 5.4: a) The Average variance progression of actual CD4 count and b) The Average 

variance progression of transformed CD4 count taken at Jimma University Specialized 

Hospital from 2007 –2011 

The actual and transformed variance of CD4 count is given in table4 and figure 5.4; it seems 

high variability of CD4 count measurements over time, the actual variance plot shows the 

variability is small at base line and increases until around 42 months followed by rapid 

decreasing. 

 

Figure 5.5: a) The variance profile of the actual CD4 count by sex and b) The variance profile of 

the transformed CD4 count by sex taken at Jimma University Specialized Hospital from 

2007 –2011 
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The actual and transformed variance profile of CD4 count by sex is given in figure 5.5; it appears 

that the actual variance of female is higher than male over time though after transformation it 

seems existence of some interaction over time. 

5.1.1.4 Exploring the correlation structure 

From the pair wise scatter plot matrix given in figure 5.6, it looks like the correlation is 

nearly constant over time thus exchangeable correlation might be appropriate.  

 

Figure 5.6: pair-wise scatter plots matrix of CD4 count taken at Jimma University Specialized 

Hospital from 2007 –2011 
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5.1.2 Modeling the Progression of CD4 count 

5.1.2.1 Generalized Estimating Equations (GEE) 

In this section the ART data is analyzed using the generalized estimating equation. For this 

purpose an exchangeable correlation structure is assumed based on the exploratory analysis 

result in figure 5.6. Though, it is not appropriate for data of this type, GEE with independence 

correlation assumption will be also considered for the sake of comparison.  

To build the GEE model, first we assumed the model with all main effect and time by selected 

main effect interaction.  

log( )=  + + + + + + + + + + +  

                        + i+ + + + +  

                          + + + + +  

Where E represents educational level, F= functional status and W= WHO stage, T=time, Wt= 

weight, S= sex and A= age.  

To compare the two propose working correlation structures, first we considered naïve and robust 

standard error estimates for both correlation to see how it close to each other. As shown in 

table5, naïve and robust standard error estimates for exchangeable correlation is close to each 

other as compared to independence suggested that it is a good working correlation structure for 

the ART data. Secondly, we compared the two correlation structures using the Correlation 

Information Criterion (CIC) and we got 43.86 and 45.4 value for exchangeable and 

independence working correlation structures respectively. Thus, from both considerations, we 

got a model with exchangeable working correlation structure is preferred.  
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Table 5.4: Comparison of exchangeable and independence working correlation structures using 

naïve and robust standard error estimates for the ART data taken at Jimma University 

Specialized Hospital from 2007 –2011 

     Exchangeable working structure Independence working structure 

Coeff.          Estimate        Naïve s.e       Robust s.e estimate         Naïve s.e        Robust s.e 

 
5.486 0.092   0.098 5.494 0.069   0.099 

 
0.032 0.003   0.003 0.036 0.003   0.004 

 
-0.167 0.036   0.037 -0.163 0.031   0.037 

 
-0.001 0.002   0.002 -0.002 0.001   0.002 

 
0.003 0.001    0.002 0.003 0.001    0.002 

 
-0.125 0.041   0.046 -0.103 0.035   0.047 

 
-0.156 0.045   0.051 -0.141 0.039   0.051 

 
-0.294 0.081   0.089 -0.273 0.072   0.092 

 
0.064 0.045    0.048 0.080 0.038    0.048 

 
-0.043 0.046   0.048 -0.036 0.039   0.049 

 
-0.185 0.065   0.064 -0.127 0.056   0.063 

 
-0.163 0.041   0.043 -0.144 0.035   0.043 

 
-0.090 0.088   0.090 -0.103 0.076   0.093 

 
-0.001 0.000  0.000 -0.001 0.000  0.000 

 
-0.001 0.002   0.002 -0.001 0.002   0.002 

 
0.009 0.002    0.003 0.010 0.002    0.003 

 
0.007 0.002    0.003 0.009 0.002    0.003 

 
0.015 0.005  0.005 0.013 0.005    0.006 

 
-0.003 0.002   0.004 -0.006 0.002   0.003 

 
0.003 0.002  0.005 -0.001 0.002   0.003 

 
0.012 0.003   0.006 0.003 0.003    0.004 

 
0.008 0.002    0.002 0.005 0.002    0.003 

 
0.003 0.004    0.008 0.000 0.004   0.005 



33 | P a g e  
 

Using the exchangeable working correlation structure, significant variables were selected using 

the generalized Wald test.  

Table 5.5: Wald test analysis table for all covariates of ART data taken at Jimma University 

Specialized Hospital from 2007 –2011 

Coefficient 
           

  

Estimate(  5.49 0.03 -0.2 -0.001 0.003 -0.13 -0.12 -0.3 0.1 -0.04 -0.2 -0.2 

s.e(  0.09

8 

0.00

7 

0.037 0.002 0.002 0.046 0.051 0.089 0.04

8 

0.048 0.064 0.043 

p-value 0.0 0.0 0.0 0.64 0.07 0.07 0.002 0.001 0.18 0.38 0.004 0.0 

 

           

-0.1 -0.001 -0.001 0.01 0.01 0.02 -0.003 0.003 0.012 0.01 0.003 

0.09 0.0001 0.002 0.003 0.003 0.005 0.004 0.005 0.006 0.002 0.008 

0.32  0.0 0.52 0.002 0.028 0.002 0.31 0.31 0.0 0.001 0.58 

As shown in table 5.5 age, weight and time by sex interaction are not significant at 5%.  Initially 

we avoiding non significant variables one by one starting from the most non significant variable 

then compared the two nested models using generalized Wald statistic. First remove age and refit 

the model finally compare the two models we got the p value 0.64. This largest p value implies 

there is no significant difference between the reduced and the full model. Hence the reduced 

model with small number of parameter is preferred. By following the same procedure we arrived 

at the final model given below.  

Log ( )=  + + + + + + + + + +  

                            + + + + +  

                                   + + + +  
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Table 5.6: Wald test estimates of the final GEE model for ART data taken at Jimma University 

specialized Hospital from January 2007 –2011 

 

Parameters         Estimate(95% conf.int)   Standard error estimates              p value  

                                                                        [Model based, Empirical] 

 

 

5.598    (5.504,5.692) [0.046, 0.048] 0.000 

 

0.031   (0.025,0.038) [0.003, 0.007] 0.000 

 

-0.173   (-0.229,-0.118) [0.028, 0.028] 0.000 

 

-0.129   (-0.219,-0.039) [0.041, 0.046] 0.005 

 

-0.162   (-0.262,-0.062) [0.045, 0.051] 0.001 

 

-0.304   (-0.478,-0.129) [0.081, 0.089] 0.001 

 

0.075    (-0.018,0.168) [0.044, 0.047] 0.113 

 

-0.029   (-0.119,0.062) [0.045, 0.046] 0.534 

 

-0.166   (-0.288,-0.043) [0.065, 0.062] 0.008 

 

-0.175   (-0.260,-0.089) [0.041, 0.044] 0.000 

 

-0.099   (-0.277,0.078) [0.088, 0.091] 0.273 

 

 

-0.001   (-0.001,0.000) [0.000, 0.0004] 0.000 

 

0.009    (0.003,0.015) [0.002, 0.003] 0.002 

 

0.007    (0.001,0.013) [0.002, 0.003] 0.028 

 

0.015    (0.006,0.024) [0.005, 0.0053] 0.002 

 

-0.003   (-0.008,0.003) [0.002, 0.005] 0.323 

 

0.003   (-0.003,0.008) [0.002, 0.003] 0.311 

 

0.011   (0.005,0.018) [0.003, 0.0031] 0.000 

 

0.008   (0.004,0.013) [0.002, 0.0021] 0.001 

 

0.002   (-0.007,0.011) [0.004, 0.008] 0.595 

    
Exchangeable correlation=0.37 

 

  

 In table7, the intercept ( =269.9) is an estimate of the mean CD4 count at base line 

(Time=0) for females which is significantly different from zero (p <0.000) given that they are 

working, illiterate and WHO stage I categories. Time ( = 1.03), implies the mean CD4 count 

increases 1.03 times per month among subjects in female group when the remaining variables 

kept constant. Similarly, the coefficient for sex  indicates, at sero-conversion the average 

CD4 count for males is  times lower than females and their difference is highly 
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significant(p<0.000) at 5%. In addition the negative coefficients for all WHO stages refers to at 

base line, their mean CD4 counts are significantly lower than the reference group(i.e, 

p=0.005,0.001,0.001for stage II,III,IV respectively). However, over time all the three groups 

have significantly better average CD4 count as compared to the reference group. For example, 

time by WHO stage II interaction ( ) entails the rate of increase in the CD4 count for 

subjects in WHO stage II category is estimated to be 1.01( ) times per month higher than 

the rate of increase among stage I patients. Thus, the rate of change in mean CD4 count is 

estimated to be 0.89( ) counts per month among stage II patients. in the 

same way, the rate of increase for subjects in stage III and IV categories are 1.01 and 1.02 times 

per month higher than the rate of increase in stage I patients respectively or the rates of change in 

the average CD4 counts are 1.04 and 1.05 counts per month among stage III and IV patients 

correspondingly. Furthermore, at base line the mean CD4 count among ambulatory and 

bedridden patients are 0.84 and 0.91 times lower than the mean CD4 count among working 

patients (reference group) respectively; although over time the rate of increase for subjects 

among ambulatory and bedridden patients are 1.01 and 1.00 counts per month higher than the 

rate of increase among subjects in the working category but, there is no significant difference 

between bedridden and working category patients at base line and over time (p=0.273, 0.595). So 

that the rates of change in mean CD4 counts are estimated to be 0.84 and 0.91 counts per month 

among ambulatory and bedridden patients respectively. 

5.1.2.2 Generalized Linear Mixed Model (GLMM) 

Based on the exploratory analysis result of the mean structure, first we assume the model with 

the main effect and Time by selected main effect interaction and incorporating intercept, time 

and time
2 

as random effects. 

Log ( ) = + ,   = , Where X and Z are matrix of fixed and random effect 

covariates as well as   and b are corresponding coefficients respectively. 

 =  + + + + + + + + + + +  

               + i+ + + + +  

                     + + + + + +  
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Table 5.7: A model with all covariate with the corresponding estimates for the ART data taken at 

Jimma University specialized Hospital from 2007 –2011 

Coefficients 
           

Estimate(  4.98 0.09 -0.09 -0.01 0.003 0.08 -0.5 -0.6 0.4 0.5 0.2 

s.e(  0.06 0.006 0.023 0.001 0.001 0.029 0.032 0.053 0.037 0.037 0.044 

p-value 0.0 0.0 0.0 0.0 0.002 0.007 0.0 0.0 0.0 0.0 0.0 

  

  
           

-0.13 0.8 -0.003 -0.001 -0.02 0.02 0.04 -0.02 -0.01 -0.001 0.01 0.004 

0.026 0.072 0.0001 0.002 0.003 0.003 0.005 0.004 0.004 0.004 0.002 0.007 

0.0 0.0  0.0 0.656 0.0 0.0 0.0 0.0 0.06 0.84 0.0 0.559 

In longitudinal data analysis, what random effect should be included to the model in order to 

account between individual variability is a critical issue. The above model considered all 

intercept, linear and quadratic time effect as random part. Now let us compared the models by 

removing each random effect one by one using AIC followed by likelihood ratio test to choose 

the best random effects that enables to account between individual variability or to fit the ART 

data well. 

Table 5.8: Comparison of models with different random effects using AIC and likelihood ratio 

test for the ART data taken at Jimma University specialized Hospital from 2007 –2011 

 intercept Intercept+time      Intercept+time+time2 

AIC 322845     236384              87033 

BIC 323002      236541              87222 

LokLik -163002     -118168              -43487 

 

: is the p value of likelihood ratio test for comparison of a model with intercept and 

Intercept+time. : is the p value of likelihood ratio test for comparison of a model with 

Intercept+time and Intercept+time+time2 
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In table 5.8, the AIC value is decreasing from 322845 to 87033 which show the model with 

intercept, time and quadratic time effect is highly improved as compared to the others. This 

result is confirmed by the likelihood ratio test (p <0.000). We also considered a model without 

random effects (i.e simply the generalized linear model) and got AIC value 571150 which is too 

large as compared to the above three models. Thus a model with Intercept+time+time2 as random 

effect is best for ART data. 

After selecting the appropriate random effects, we assessed the significance of the fixed effects. 

As given in the previous table (table 5.7), time by sex interaction is not significant (p=0.656) at 

5%. Therefore we removed it from the model and compared the reduced and full model using 

AIC followed by likelihood ratio test and we obtained AIC value decreases from 87033 to 87024 

due to the removal of time by sex interaction (p=0.99).  Thus, the reduced model with less 

number of parameter is preferred     

Table 5.9: Comparison of models with and without sex by time interaction using AIC and 

likelihood ratio test for the ART data taken at Jimma University specialized Hospital  

          from 2007 –2011 

 Model with time:sex Model without time:sex 

 

   

AIC         87033         87024 

BIC         87222         87207 

LogLik         -43487        -43484 

P =0.99  

P: value of likelihood ratio test for a model comparison with and without sex by time interaction 

The final model for generalized linear mixed model is given below. 

=  + + + + + + + + + + +  

                 + i+ + + + +  

                      + + + + + +  
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  Table 5.10: Wald test estimates of the final GLMM model for ART data taken at Jimma 

University Specialized Hospital from 2007 –2011 

         

Covariates 

     

Estimates( ) 

                  

Std.  error 

               

P values 

         

95%coenf.int     

Lower 

       

 

upper 

Random effects 

variance 

estimates 

 

           4.961 0.040 0.000 4.844 5.079 G00 0.82  

 

           0.096 0.006 0.000 0.085 0.107 G11 0.029  

 

           -0.088 0.017 0.000 -0.122 -0.054 G22 0.0001  

 

           -0.006 0.001 0.000 -0.009 -0.004 G01 -0.93  

 

0.003 0.001 0.007 0.001 0.005 GO2  0.003  

 

0.083 0.029 0.004 0.027 0.140 G12 -0.002  

 

-0.508 0.032 0.000 -0.570 -0.445 Correlation   

 

-0.663 0.054 0.000 -0.768 -0.558 
 

-0.6  

 

0.415 0.037 0.000 0.343 0.487 
 

0.038  

 

0.511 0.036 0.000 0.440 0.583 
 

-0.92  

 

0.198 0.044 0.000 0.112 0.283    

 

-0.127 0.025 0.000 -0.177 -0.077 
 

1.432 

 

0.858 0.072 0.000 0.717 0.999    

 

-0.003 0.0003 0.000 -0.003 -0.002    

 

-0.021 0.003 0.000 -0.026 -0.015    

 

0.020 0.003 0.000 0.014 0.026    

 

0.045 0.005 0.000 0.036 0.054    

 

-0.023 0.004 0.000 -0.031 -0.016    

 

-0.012 0.003 0.000 -0.018 -0.005    

 

-0.005 0.003 0.122 -0.012 0.001    

 

0.013 0.002 0.000 0.009 0.017    

 

0.002 0.007 0.774 -0.012 0.016    

From table 5.10, there are two estimated variance components; these are the random effects 

variances and the residual variance.  The residual variance is var( )= =1.432 and for the 
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random effects, var(bo)= Goo=0.82,var(b1)=G11=0.029 and var(b2)=G22=0.0001, similarly, 

cov(b0,b1)=G01= -0.93, cov(bo,b2)=0.003, cov(b1,b2)=-0.002. Under the assumption of 

normally distributed random effects  =0.91, implies that 95% of female individuals have a 

mean CD4 count at seroconversion between  = 24 and  =849.5. We 

emphasize that this interval is for each female individual values of the CD4 count at baseline 

rather than for individual measurements at baseline. The interval (24, 849.5) does not include the 

measurement variation attributable to the residuals. Similarly, there is a discernible heterogeneity 

in the patient to patient changes in the CD4 count rates. The total variability between individuals 

is estimated as Goo+ G11+G22= 0.8491 whereas the total variability within individual is 1.432. 

However, the total variation in CD4 count is estimated to be1.432+0.8491= 2.2811. The 

proportion of total variability that is attributed to within person variation is given by 

1.432/2.2811 is 62.8% while the proportion of total variability attributed to between individual 

variations in their general level of CD4 count is 0.8491/2.2811is 37.2%. Therefore more than 

half of the variation is explained by the residuals.  

The correlation = -0.6 indicates, there is a negative correlation between intercept and slope of 

linear time effect for the random part (i.e when patient’s intercept increase by one unit of 

standard deviation, their slope would decrease by 0.6 standard deviations) whilst = 0.38 

implies there is a weak positive correlation between the intercept and slopes for quadratic time 

effect (i.e when patient’s intercept increase by one unit of standard deviation, their quadratic time 

effects slope would increase by 0.38 standard deviations). In the same way, = -0.92 which 

shows there is a strong negative correlation between linear and quadratic time effect. 

All the fixed effects parameters in GLMM have subject specific interpretation unlike marginal 

model. Thus, given the random effects( ); the intercept ( =142.7) in GLMM  is an 

estimate of the “i
th

 ” female subject average CD4 count provided that she is working, illiterate 

and WHO stage I categories. Similarly, Time ( = 1.06), implies the mean CD4 count increases 

1.06 times per month for the “i
th

” female individual when the remaining variables kept constant 

and it is significantly different from zero (p<0.000) at 5%. In addition the coefficient for sex ( =-

0.088) verifies that the mean CD4 count for “i
th

” male individual is 0.92( ) times lower than 

female individual with the same random effects ( ) at base line and their difference is highly 
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significant (p-value<0.000) at 5%. For the sake of comparing the results of GLMM to GEE, let 

us consider, time by WHO stage II interaction ( ) indicates, there is a significant 

difference(p<0.000) between stage I and stage II patients in terms of subject-specific changes in 

the expected rates of CD4 count. In particular, rate of increase in the mean CD4 count for “i
th

 ”  

subject in WHO stage II category is estimated to be 0.98 times per month lower than the rate of 

increase for any stage I category patient with the same random effects( ). Thus, the rate of 

change in mean CD4 count for the “i
th

 ” individual in stage II category is estimated to be 

1.06( ) counts per month. Other parameters are interpreted in the same 

way.  Generally, except the interaction of time by secondary educational level and time by 

bedridden functional status, all other coefficients are highly significant at 5%. It means there is a 

significant difference between the two comparable groups. 

5.1.2.2.1 Model diagnostic for GLMM  

Residual versus fitted value plot for final GLMM model is presented in figure1 (Annex I), it does 

not show any systematic pattern this point out the model fits the data well and the Q-Q plot 

(Annex I) also verifies the residual are normally distributed and symmetric around zero. Thus, it 

meets the assumption of error term. Besides to the above, the non linearity of the Q-Q plot 

confirms the model is not linear. Furthermore, the residual versus each categorical predictor 

recommended that there is a uniformity of residuals across each level of covariates specifies that 

homogeneity of error variances.  Residuals versus observation ID number plot (figure4, Annex I) 

also suggested the residuals are symmetric around zero (i.e. positive and negative residuals are 

almost equal) and there is no outlier. Plots of observed versus fitted value of CD4 count is given 

in figure5 (Annex I), it verifies that there is a close agreement between observed and fitted 

values suggested that this model is good in predicting CD4 count.  Q-Q plots for normality of 

random effects are also given in figure6 and figure7 of the same annex; which illustrates the 

random effects are normally distributed with mean zero and variance covariance matrix G. Thus, 

the fitted GLMM model is fine for ART data.   

5.1.2.3 Comparison of GLMM and GEE  

Even though the parameter estimates in GLMM and GEE have different interpretations (i.e 

GLMM provides subject-specific parameter estimates where as GEE only estimate population 
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average regression coefficients), we can compare the two models using their respective standard 

error estimates (ratio). For the sake of comparison, the study did not use the outputs of respective 

final models directly. This is because non-significant covariates were removed from GEE final 

model so that it is impossible to compare two models having different number of covariates. 

Thus, we considered all covariates for both models and the result for both models is presented in 

Table 5.11. The ratio of the standard error estimates of GLMM to GEE is between 0.33 and 1; it 

means the standard error estimates of GLMM are smaller than that of GEE, except five 

covariates having approximately equal estimates. In other words the GLMM fits the data with 

small disturbance than GEE. Therefore, GLMM model is better than GEE provided that GEE has 

marginal interpretation and GLMM has conditional interpretation, conditionally upon level of 

random effects. In addition, from the same table we saw that some of the fixed effect coefficients 

( , , ) have opposite signs for the two models, this result is due to 

subject specific and population average  interpretation for the two models. Moreover, age, weight 

and sex by time interaction are not significant (p=0.64, 0.07, 0.52 respectively) for GEE model 

whereas in GLMM, only sex by time interaction is not significant (p=0.66) at 5%. Similarly most 

covariates p values are higher in GEE as compared to GLMM. 
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Table 5.11: Comparison of GEE and GLMM using their standard error estimate ratio for ART 

data taken at Jimma University Specialized Hospital from 2007 –2011 

 

 

 

 

 

 

                           GEE                    GLMM     Ratio  

  Estimate     Std.err P value Estimate Std.err   P value GLMM/gee  

          

          
 

 

5.486 0.098 0.000 4.981 0.060 0.000 0.60  

 
 

0.032 0.007 0.000 0.092 0.006 0.000 0.86  

 
 

-0.167 0.037 0.000 -0.089 0.023 0.000 0.62  

 
 

-0.001 0.002 0.639 -0.006 0.001 0.000 0.5  

 
 

0.003 0.002 0.074 0.003 0.001 0.002 0.5  

 
 

-0.126 0.046 0.007 0.078 0.029 0.007 0.63  

 
 

-0.156 0.051 0.002   -0.49 0.032 0.000 0.63  

 
 

-0.294 0.089 0.001 -0.626 0.053 0.000 0.60  

 
 

0.064 0.048 0.179 0.375 0.037 0.000 0.77  

 
 

-0.043 0.048 0.375 0.461 0.037 0.000 0.77  

 
 

-0.185 0.064 0.004 0.156 0.044 0.000 0.69  

 
 

-0.163 0.043 0.000 -0.132 0.026 0.000 0.60  

 
 

-0.090 0.090 0.321 0.777 0.072 0.000 0.80  

 
 

-0.001 0.000 0.000 -0.003 0.000 0.000 0.33  

 
 

-0.001 0.002 0.522 -0.001 0.002 0.656 1  

 
 

0.009 0.003 0.002 -0.019 0.003 0.000 1  

 
 

0.007 0.003 0.028 0.020 0.003 0.000 1  

 
 

0.015 0.005 0.002 0.043 0.005 0.000 1  

 
 

-0.003 0.004 0.314 -0.020 0.004 0.000 0.97  

 
 

0.003 0.005 0.305 -0.007 0.004 0.055 0.80  

 
 

0.012 0.006 0.000 -0.001 0.004 0.843 0.67  

 
 

0.008 0.002 0.001 0.013 0.002 0.000 1  

 
 

0.003 0.008 0.582 0.004 0.007 0.559 0.88  
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5.2 Discussion 

This study was aiming at modeling the progression of HIV infection using longitudinally 

measured CD4 count for HIV positive patients initiated to ART. Since the data is correlated and 

discrete (count), for such types of data two generalized models (GEE and GLMM) were applied. 

The ART data was analyzed using different plots (exploratory analysis) followed by model based 

outputs. From individuals profile plot, we observed the existence of variability in CD4 count 

within and between individuals. The exploratory analysis result for mean structure also 

suggested that on average, CD4 count increases in a quadratic pattern over time. This supports 

the results of Moing et al. (2002) who found that after the patients initiated to the ART program 

their CD4 count increases due to the therapy. It is indirectly associated with the decrease in the 

progression of HIV infection as the immune system and HIV infection are negatively correlated 

or simply it delays disease progression(time to AIDS). Additionally, the mean CD4 count for 

female is higher than male up to around 42 months however it is not significant over time. In 

general, the exploratory analysis of the mean structure supported the findings of both Bayeh et 

al. (2010) and Shiras. R.P (2006) who said the progression of CD4 count increase at high rate 

after patients initiated to ART. 

Two propose working correlation structures, where exchangeable correlation is selected based on 

exploratory analysis result and independence correlation simply taken for the sake of 

comparison, for GEE model were compared in this paper and found that exchangeable working 

correlation structure fits the ART data better than independence. On the other hand, in GLMM a 

model with only intercept, intercept + time and intercept+ time + time
2 

were compared for the 

purpose of selecting the best random effect that enable to account the variability between 

individuals. The three models were compared using the AIC value followed by likelihood ratio 

test and we got a model with intercept + time + time
2
 as random effect is the best. 

From the final model results of GEE; age, weight and time by sex interactions (p=0.64, 0.07, 

0.52 respectively) are not significant predictors of CD4 count progression at 5% whereas in 

GLMM, only time by sex interaction is not significant (p=0.66). In this regard, more or less the 

findings from GLMM supports the previous findings of Ville’s et al. (2007) who found that 

different characteristics of the individuals like age, base line clinical stage, plasma HIV RNA and 

time since HIV diagnosis are recognized predictors of progression of HIV infections. In addition, 
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Bayeh et al. (2009) identified age, sex, educational levels and income levels of HIV patients as 

predictors of CD4 count progression after initiated to ART.  

According to both models result, the average CD4 count is significantly lower in males than 

females at base line as suggested by exploratory analysis though there is no significant difference 

over time.  In the same way, Moing et al. (2002) got males and females have no significant 

difference in their CD4 count progression over time. In addition, the evolution of CD4 count is 

differing by patients’ base line educational levels, functional status and clinical stages. From, 

final GLMM output, the proportion of total variability that is attributed to the within person 

variation is 68.2% whereas the remaining 37.8% is attributed to the between person variation.    

This study also compared the two models using their standard error estimates ratio 

(Molenberghs, 2008) and obtained GLMM fits the ART data better than GEE with a small 

disturbance provided that parameters in GLMM have subject specific interpretation while GEE 

have population average interpretation. Due to the difference in their parameter interpretation, 

some of the fixed effect coefficients ( , , ) have opposite signs for the 

two models which support the findings of  Renard (2002) and Fu(2010). Furthermore, when we 

compare the corresponding p values, most covariates are highly significant for GLMM than GEE 

at 5%. 
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CHAPER SIX 

6. CONCLUSSIONS AND RECOMMENDATIONS 

6.1 CONCLUSSIONS  

This study evaluated the association between the progressions of HIV infection using 

longitudinally measured CD4 count and its possible predictors via longitudinal analysis 

methodologies. Statistically two modeling approaches (GEE and GLMM) have been compared 

for the analysis of ART data and we obtained GLMM exhibited the best fit for this data with 

small disturbance than GEE.  

The study also found that except time by sex interaction, all other candidate covariates were 

identified as significant predictors for the progression of CD4 count (HIV infection).  Moreover, 

on average CD4 count increases in a quadratic pattern over time after patients initiated to ART 

program (i.e the immune system increases where as the progression of the disease turn down due 

to the therapy).  

We also concluded that the mean CD4 count for male is significantly lower than female at base 

line. Finally, we end up with a conclusion that the evolution of CD4 count (HIV infection) is 

differing by patient’s baseline demographic and clinical characteristics like sex, WHO stages, 

educational levels and functional status. 
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6.2 RECOMMENDATIONS 

Being HIV infection is the most serious disease in the world, modeling the progression of this 

disease helps to identify the factors that affect the success of the therapy which helps to discover 

new vaccine or drug by considering the identified factors. Thus further studies should be done in 

the area using these newly developed and most flexible methodologies by including additional 

covariates like regimen and viral load of patients which predict the evolution of HIV infection in 

a better way.  

Furthermore, though the choice between GEE and GLMM for longitudinal data can only be 

made on subject matter grounds, using generalized linear mixed model is much emphasized than 

generalized estimating equations for correlated data as GEE can only handle the within subject 

variations through the assigned working correlation structure where as GLMM in addition to 

within measurement variation, between individual variations can be accounted by incorporating 

the random effects. Due to that, GLMM fits a given data with a small disturbance than GEE.  
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ANNEX I 

Model diagnostics for GLMM model 

 

Figure1: different plots of residuals 

 

Figure 2: plots of residuals versus observation id number 



51 | P a g e  
 

 

Figure3: plots of observed versus fitted value for the ART data 

 

Figure4: normal qq plots of the random effects 
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Figure5: Q-Q plots for the random intercept, slope and quadratic time effects 
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ANNEXII 

Table 1: Observed correlation matrix for CD4 count  

               0           6       12        18       24        30        36     42         48      54 

0 1.000 -0.013  0.007  0.048 -0.012 -0.040  0.043 -0.021 -0.010  0.031 

6 -0.013  1.000  0.006  0.053  0.016  0.016 -0.013  0.032 -0.016  0.000 

12 0.007  0.006  1.000 -0.012 -0.031  0.011 -0.001 -0.049 -0.001 -0.049 

18 0.048  0.053 -0.012  1.000 -0.006 -0.015 -0.020 -0.016  0.026 -0.016 

24 -0.012  0.016 -0.031 -0.006  1.000  0.025 -0.013  0.002 -0.010  0.015 

30 -0.040  0.016  0.011 -0.015  0.025  1.000  0.000 -0.023  0.025 -0.008 

36 0.043 -0.013 -0.001 -0.020 -0.013  0.000  1.000 -0.005  0.014 -0.001 

42 -0.021  0.032 -0.049 -0.016  0.002 -0.023 -0.005  1.000  0.013 -0.002 

48 -0.010 -0.016 -0.001  0.026 -0.010  0.025  0.014  0.013  1.000  0.006 

54 0.031  0.000 -0.049 -0.016  0.015 -0.008 -0.001 -0.002  0.006  1.000 

Table 2: Observed variance covariance matrix for CD4 count  

              0           6       12        18       24        30        36     42         48      54 

0  0.922 -0.009  0.004  0.025 -0.007 -0.024  0.025 -0.012 -0.004  0.012 

6  -0.009  0.522  0.003  0.021  0.007  0.007 -0.005  0.013 -0.005  0.000 

12  0.004  0.003  0.396 -0.004 -0.012  0.004  0.000 -0.018  0.000 -0.013 

18  0.025  0.021 -0.004  0.296 -0.002 -0.005 -0.007 -0.005  0.007 -0.004 

24  -0.007  0.007 -0.012 -0.002  0.399  0.010 -0.005  0.001 -0.003  0.004 

30  -0.024  0.007  0.004 -0.005  0.010  0.388  0.000 -0.008  0.007 -0.002 

36  0.025 -0.005  0.000 -0.007 -0.005  0.000  0.353 -0.002  0.004  0.000 

42  -0.012  0.013 -0.018 -0.005  0.001 -0.008 -0.002  0.332  0.004 -0.001 

48  -0.004 -0.005  0.000  0.007 -0.003  0.007  0.004  0.004  0.232  0.001 

54  0.012  0.000 -0.013 -0.004  0.004 -0.002  0.000 -0.001  0.001  0.173 

 

 

 


