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ABSTRACT 

Objective: The main aim of this study is to investigate under-five child 

mortality variations among regional states of Ethiopia.  

Data: This study is conducted based on Demographic and Health Survey (DHS) 

2011 data, collected for 10,156 children under-five years of age in Ethiopia.  

Methods: In this study, single level and multilevel binary logistic regression 

models is adopted for the analysis.  

Results and conclusions: Based on the model adequacy tests the random 

intercept binary logistic regression model is found to be best fitting to the data. 

The variance of the random component model related to the intercept term is 

statistically significant, implying the presence of under-five child mortality 

variations among regional states of the country and it is accounted by the 

random intercept term. The major significant factors affected under-five child 

mortality are: mother’s education level, birth index, child size at birth, mother’s 

age at birth, type of birth and breastfeeding status. It also revealed that there is 

a contribution of those major factors to under-five child mortality variations 

among regional states. However, those factors significantly affecting under-five 

child mortality is explicitly did not show significant effects on variations of 

under-five child mortality across regional states. The study recommend all 

regional states to makes remedial measures on public health policy, design 

strategy to improve facilities and aptitudes of stakeholder living in their region 

toward those major factors affecting under-five child mortality and contributing 

to its variations among regional states to reduce under-five child mortality in 

the country. 
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1. Introduction  

1.1. Background 

Improvements in child survival have been one of the major targets of 

development programs of Ethiopia during the past three decades.  According to 

Ethiopian 2010 MDGs Reports trends and prospective for meeting MDG by 

2015, sixteen out of every hundred children born in Ethiopia will not live 

beyond their fifth birth day. Five will not even live the first month of life. Every 

year, approximately, 472,000 children under five years of age die in Ethiopia 

(MoFED, 2010).  

In 2000, the Ethiopia Demographic and Health Survey (EDHS) estimated the 

under-five mortality rate (U5MR) at 166 per 1000 live births. The Ethiopian 

Ministry of Health (MOH) estimates that the U5MR for 2002-03 was 140. In 

2000, the rate of 166 placed Ethiopia at 21
st 

in the world for under-five 

mortality. Ethiopia neonatal mortality rate was relatively even higher and it was 

the fifth-highest in the world. According to EDHS 2005, the rate of mortality in 

Ethiopia examined by comparing data from 2005 EDHS and 2000 EDHS, 

infant and under-five mortality rates, obtained for the five years preceding the 

two surveys, confirm a declining trend in mortality. Under-five mortality 

declined from 166 deaths per 1,000 live births in the 2000 survey to 123, while 

infant mortality declined from 97 deaths per 1,000 live births in the 2000 survey 

to 77 (CSA, 2005). Even the child mortality has declined in Ethiopia still it is 

high child death at national level as compared to developed countries. Ethiopian 

MDG 4 would further reduction of child and maternal death. 
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The regional difference in child mortality may be due to differences in socio-

economic composition (Kandala et al., 2007), health-seeking behavior 

regarding child immunizations (Antai, 2009) and maternal and child health care 

utilization (Antai et al., 2009). Indeed, the incorporation of community-level 

factors in the analysis of child mortality provides an opportunity to identify the 

health risks associated with particular social structures and community 

ecologies, which is a key policy tool for the development of public health 

interventions (Pickett and Pearl, 2001; Stephenson et al., 2006). 

The number of under-five deaths in worldwide has declined from more than 12 

million in 1990 to 7.6 million in 2010. Nearly 21,000 children under-five died 

every day in 2010 which was about 12,000 less than in 1990. Since 1990, the 

global under-five mortality rate has dropped 35 percent from 88 deaths per 

1,000 live births in 1990 to 57 in 2010. The Northern Africa, Eastern Asia, 

Latin America and the Caribbean, South-eastern Asia, Western Asia and the 

developed regions have reduced their under- five mortality. The rate of under-

five mortality was reduced in the year over 2000 to 2010, but remains 

insufficient to reach MDG 4, particularly in Sub-Saharan Africa, Oceania, 

Caucasus and Central Asia, and Southern Asia (United Nation, 2011). 

The highest rates of child mortality have been still in Sub-Saharan Africa where 

1 in 8 children died before age five, which is more than the average for 

developed regions and Southern Asia. Under-five mortality rates have fallen 

elsewhere and the disparity between these two regions and the rest of the world 

has grown. Under-five deaths are increasingly concentrated in Sub-Saharan 

Africa and Southern Asia, while the share of the rest of the world dropped in 

2010 (United Nation, 2011). 
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A consistent series of estimates of under-five mortality rate provided historical 

trends, during the period of 1950–2000 for both developed and developing 

countries. On an average about 15% of newborn children in Africa are expected 

to die before reaching their fifth birthday (Omar et al., 2000). The progress of 

infant and child mortality in Sub-Saharan Africa remained as a major health 

problem, and the progress made during the past four decade has been unevenly 

distributed (Garenne and Gakusi, 2006).  

The neonatal, post-neonatal, infant and child mortality pattern are higher for 

mothers who are under 20 years of age. Infant and child mortality levels are 

lower for children whose mother’s age is between 20 up to 29. Neonatal 

mortality of the children whose mothers aged is below  20 years at the time of 

the child’s birth, is higher than the children whose mothers are in the age range 

20-29 years at the time of giving birth. Short birth intervals were significantly 

reduced infant probability of survival. The researchers used cross classification 

percentage distribution and logistic regression model (Mondal et al., 2009). 

An investigation on historical and modern third world countries have shown 

that children who are exclusively breast-fed survive longer and are healthier 

than artificially fed  children in direct (Lindstrom et. al., 1999). And also the 

breastfeeding practices have significantly lower risk among neonatal, post-

neonatal and child mortality levels as compared to children never breastfed 

(Mondal et al., 2009). 

In Ethiopia a retrospective birth history data from a national survey used 

proportion hazard regression model (Lindstrom and Gebre-Egziabher, 2001) 

found a significantly higher risk of a conception in the months, following the 

death of an index child, even after controlling for breastfeeding status. 
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Maternal education has been identified as one of the most important socio-

economic determinants of infant and child mortality. The study revealed a 

significant association between mother’s education and infant and child 

mortality. The researchers used statistical test of independence based on Chi-

square (Mahfouz et al., 2009). There has been considerable decline in infant 

mortality as mother’s educational attainment increases. However, there exists a 

marked differential among the regions. Infants born to women with no 

education are almost more likely to die before age one than infants born to 

women with primary and higher education and the researcher adopted 

multivariate logistic regression model in Ghana (Goro, 2007).  

Improvements in child survival have been one of the major targets of 

development programs during the past three decades. A century later, out of the 

187 countries, only nineteen countries- all in Africa- had an infant mortality rate 

of above ten percent. Ethiopia, through the progressive implementation of the 

Health Sector Development Program in the last seven years, has made great 

strides to improve maternal and child survival. The reduction of infant and child 

mortality indirectly helps in reducing fertility by decreasing the desired number 

of children to be born due to increased probability of survival of a child. Under-

five mortality is significantly influenced by breastfeeding status, ownership of 

toilet facilities, the level of education of the mother, residential area and place 

of delivery of the child; rural mothers and children are particularly at 

disadvantage with regards to basic health and socio-economic services based on 

logistic regression analysis and Cox regression (Zeleke, 2009). Birth interval 

with previous child and mother standard of living index are the vital factor 

associated with child mortality. The cross-tabulation analysis (Kumar and 
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Gemechis, 2010) shows that birth interval with previous child and mother 

standard of living index is the vital factor associated with child mortality. 

Regional disparities in under-five child mortalities are associated with factors at 

the community level that distinguish these regions from each other. The 

availability of services and social amenities in communities, or the lack 

infrastructure, may positively or negatively influence the health of the residents 

of communities. Some of these factors include differences in community-level 

development, population density, prevalence of poverty, and availability of 

maternal and child health care services. These are often interrelated aspects of 

the regional environment that are important for child health and well-being, and 

may also be relevant in exacerbating or mitigating inequities in resources and 

population health outcomes across regions (Siddiqi et al., 2007).  

The most recent studies related to child mortality in the regions within 

geographically diverse ecology and socioeconomic circumstances may have 

different disease exposures and child health outcomes. Antai (2011) tried to 

assess variations in the risks of death in children under age 5 across regions of 

Nigeria and determined characteristics at the individual and community levels 

that explained possible variations among regions. The researcher applied 

multilevel Cox proportional hazards analysis using a nationally representative 

sample of 6,029 children from 2,735 mothers aged 15-49 years and nested 

within 365 communities from the 2003 Nigeria Demographic and Health 

Survey. Hazard ratios (HR) with 95% confidence intervals (CI) were used to 

express measures of association among the characteristics. Variance partition 

coefficients and Wald statistic were used to express measures of variation. 

From the results, the researcher suggested the need to differentially focus on 

community-level interventions aimed at increasing maternal and child health 
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care utilization and improving the socioeconomic position of mothers, 

especially in disadvantaged regions such as the South (Niger Delta) region 

(Antai, 2011).  

Statement of the Problem 

Under-five children mortality in Ethiopia is one of the highest in the world and 

it is one of the challenging problems that the country needs to address.  Even in 

an average year, the education, health and economic situation for millions of 

Ethiopian under-five children can only be described as a crisis. In Ethiopia 

factors such as, low level of mother’s education, unsafe drinking water and 

sanitation, low family income, birth interval, short to breast feeding time, lack 

of place of birth delivery and periodic famine continue to put children at risk. 

This study has been highly motivated to investigate the major determinants of 

under-five child mortality and hence, it is aimed to address the following 

questions: 

 What are the factors have significant impacts on under-five child 

mortality among variables considered in Ethiopia? 

 Are there significant variations of under-five child mortality across the 

regional states of Ethiopia?  

 What factors have made significant contribution to the variation of under-

five child mortality among regional states of Ethiopia?  
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2. Data and Methodology 

2.1. Descriptions of Study Area and Population 

Ethiopia is officially known as the Federal Democratic Republic of Ethiopia, is 

a landlocked country located in the Horn of Africa. It is the second-most 

populous nation in Africa, with over 82 million populations (CSA, 2012) and 

the tenth largest by area, occupying 1,100,000 km
2
. Ethiopia is bordered by 

Eritrea to the North, Djibouti and Somalia to the East Sudan and South Sudan to 

the West, and Kenya to the South. Ethiopia has eleven geographic or 

administrative regions: nine regional states (Tigray, Affar, Amhara, Oromia, 

Somali, Benishangul-Gumuz, SNNPR, Gambela and Harari) and two city 

administrations (Addis Ababa and Dire Dawa that are considered as region) 

with capital city of Addis Ababa. 

Administratively, each of the 11 geographic regions in Ethiopia is divided into 

zones and each zone is divided into lower administrative units called woredas. 

Each woreda is then further subdivided into the lowest administrative unit, 

called a kebele.  

2.2. Data  

The data used for this study is 2011 Ethiopia Demographic and Health Survey 

(2011 EDHS). The survey was conducted under the guidance of the Ministry of 

Health by the Central Statistical Authority from 27, December 2010 through 

June 2011 with a nationally representative sample of nearly 18,500 households. 

But in this study, the data from Somali region was excluded from this study, 

because in the Somali region, in 18 of the 65 selected EAs listed households 

were not interviewed for various reasons, such as drought and security 

problems, and 10 of the 65 selected EAs, were not listed due to security 
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reasons. Therefore, the data for Somali may not be totally representative of the 

region as a whole (CSA, 2011). 

The sample for the 2011 EDHS designed to provide population and health 

indicators at the national and regional levels. The sample design allowed for 

specific indicators, such as contraceptive use, to be calculated for each of 

Ethiopia’s eleven geographic/administrative regions: nine regional states and 

two city administrations. The sampling frame used for the 2011 EDHS was the 

Population and Housing Census conducted by the Central Statistical Authority 

(CSA) in 2007. During the 2007 PHC, each of the kebeles was subdivided into 

convenient areas called census enumeration areas (EAs). The 2011 EDHS 

sample was selected using a stratified, two-stage cluster design and EAs were 

the sampling units for the first stage. The 2011 EDHS sample included 624 

EAs, 187 in urban areas and 437 in rural areas (CSA, 2011). 

Households comprised the second stage of sampling. A complete listing of 

households carried out in each of the 624 selected EAs from September 2010 

through January 2011. Maps were drawn for each of the clusters and all private 

households were listed. The listing excluded institutional living arrangements 

(e.g., army barracks, hospitals, police camps, and boarding schools).  

All women age 15-49 and all men age 15-59 who were either permanent 

residents of the selected households or visitors who stayed in the household the 

night before the survey were eligible to be interviewed (CSA, 2011). 

The structure of EDHS data and conceptual framework was shown as the 

following figure: 
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   Fig 2.1: Structure of EDHS Data and its Conceptual Framework  

2.3. Variables of the Study 

The variables considered in this study taken based on earlier studies at the 

global and national level. As discussed in the literature review socio-economic, 

demographic and environmental characteristics are to be the essential and 

proximate determinants of child mortality at worldwide and national level as 

well.  In this study, the potential determinant factors expected to be correlated 

with under-five child mortality are included as variables. Those variables 

considered in this study are classified as: dependent and explanatory or 

indicator variables stated below.  

2.3.1. Dependent Variable 

The dependent variable of interest for this study is child event before reaching 

five years of age, measured as the duration from birth to the age at death. Since 

in the DHS age at death (reported in days and months) is subject to heaping at 

certain ages, a discrete formulation of time is preferred to a continuous one. It is 
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dichotomous coded as 1 if child died in the five years before the survey and 0 if 

alive. 

2.3.2. Explanatory Variables  

In the present study the following socio-economic, demographic and 

environmental factors which are expected to have impacts on under-five child 

mortality in Ethiopia are classified as individual level variables and regional 

level variables as given below: 

Individual Level Variables 

 Birth index 

 Birth in last five years  

 Birth order  

 Breastfeeding status  

 Child’s sex  

 Child size at birth  

 Household wealth 

 Mother’s age at birth  

 Mother’s education  

 Mother’s work status  

 Preceding birth interval  

 Religion and 

 Type of birth 

Regional Level Variables 

 Household toilet facility 

 Place of birth delivery  

 Place of residence 

 Source of drinking water and 

 Region 
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2.4. The Binary Logistic Regression Model 

Logistic regression is a predictive model, like linear regression. But logistic 

regression involves prediction of a categorical dependent variable. The predictors 

can be continuous or dichotomous, as in regression analysis, but ordinary least 

squares regression (OLS) is not appropriate if the outcome is categorical. Whereas 

the OLS regression uses normal probability theory, logistic regression uses 

binomial probability theory. Binary logistic outcomes (dependent variables) are 

binary (dichotomous) and can be coded 0 (failure) and 1 (success). In the case of 

binary dependent variables, most assumptions in linear regression are violated and 

the dependent variable is restricted to the range of (0, 1), while in OLS regression 

there is no bounds. So, the solution for the violation of OLS assumption is logistic 

regression that does not make any assumption of normality, linearity, and 

homogeneity of variance for the independent variables.  And by the log 

transformation will expand the range from (0, 1) to infinity. 

Logistic regression is used to predict a categorical variable from a set of predictor 

variables are a mix of continuous and categorical variables or if they are not 

normally distributed (logistic regression makes no assumptions about the 

distributions of the predictor variables). While, discriminant function analysis is 

usually employed with categorical dependent variables if all of the predictors are 

continuous and normally distributed and logit analysis is usually employed if all of 

the predictors are categorical. Logistic regression has been especially popular with 

medical research in which the dependent variable is whether or not a patient dead. 

In general, it is appropriate to use binary logistic regression when the dependent 

variable is dichotomous (such as presence or absence, success or failure) (Hosmer 

and Lemeshow, 1989).  
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Binary logistic regression model is used to investigate the effect of predictors on 

the probability of having under-five child mortality is defined as follows: 

 Dependent variable is given as:         






Otherwise

ageofyearsfivebeforediedchildIf
Y

ij
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,1

                                              (2.1) 
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Where: M- is the number of under-five children in each region 𝑗. 

             N- is the number of region. 

 Let   denote the proportion of success (death of child before five years of age):  
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The logistic model is defined as follows. Let 𝑋𝑛𝑥(𝑘+1) denote the single level 

binary logistic regression data matrix of k predicator variables of the under-five 
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             X -is the design matrix  

             β - is the vector of unknown coefficients of the covariates and intercept  

Then, the logistic regression function is given as:
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Where: ),...,2,1( ni
i

 is the probability of th
i child having death before five years 

of age given the vector of predictors  
i

X . 

By algebraic manipulation, the logistic regression equation can be written in terms 

of an odds ratio for success:  
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Where:  𝑖 = 1, 2, … , 𝑛; 𝑗 = 0,1, 2, … , 𝑘  

The coefficient is interpreted as the change in the log-odds of having child death 

before five years of age per unit change of corresponding continuous covariate. In 

case of categorical predictor variable, it is interpreted as the log-odds of having 

child death before five years of age with a given category compared to the 

reference category (Dayton, 1992).  

2.4.1. Assumption of Binary Logistic Regression 

As indicated in the above sections, the advantage of the logistic regression is that it 

has flexible assumptions as compared with discriminant analysis. There are, 

however, other assumptions one should consider for the efficient use of logistic 

regression as detailed in (Hosmer and Lemeshow, 1989). 

 Linear relationship exists through logit transformation of the dependent 

variable. 

 The dependent variable is categorical to have to outcome. 
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 The dependent variable may assume a distribution from an exponential 

family (e.g. binomial, Poisson, multinomial, normal); binary logistic 

regression assume binomial distribution of the response. 

 The groups for the predictors must be mutually exclusive and exhaustive. 

 Larger samples are needed than for linear regression because maximum 

likelihood coefficients are large sample estimates. A minimum of 50 cases 

per predictor is recommended. 

 There should not be severe collinearity among predictor variables. 

2.4.2. Estimation of Coefficients in Logistic Regression Model  

Based on assumption mentioned above, the logistic regression wants to use 

maximum likelihood to estimation the unknown coefficients of logistic regression 

model. 

2.4.2.1. Maximum Likelihood Estimation for Logistic Regression 

The maximum likelihood estimation method is appropriate for estimating the 

logistic model parameters due to this less restrictive nature of the underlying 

assumptions stated above. Hence, in this study the maximum likelihood estimation 

technique is used to estimate parameters of the model. 

 

Consider the logistic regression model equation (2.3): 
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And the log-likelihood function is:  
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The k + 1 score functions of β for the logistic regression model cannot be solved 

analytically. It is common to use a numerical algorithm, such as the Newton-

Raphson algorithm, to obtain the MLEs. The information in this case will be a 

(𝑝 + 1)𝑥(𝑝 + 1)matrix of the partial second derivative 𝑙 with respect to the 

parameters, β. The inverted information matrix is the covariance matrix for ̂

(Collet, 1991). 

2.4.2.2. The Odds Ratio 

The odds ratio is defined as the ratio of the probability of the occurrence of an 

event to non-occurrence of an event (Wang, 2011). 

In binary logistic regression analysis, odds ratio is the exponent of the estimated 

coefficient )ˆexp(  . For each continuous covariate let say j, )ˆexp(
j

 is the predicted 

change in odds having under-five child mortality for a unit increase in predictor j 

variable (Dayton, 1992). In case of categorical predictor variable, )ˆexp(  is the 

predicted change in odds having under-five child mortality for a given category of 

the predictor variable with respect to the reference category.  

2.4.3. The Assessment of Goodness Fit of Logistic Regression Model 

2.4.3.1. The Likelihood Ratio Test 

The likelihood ratio chi-square  2
G  statistic is the test statistic commonly used for 

assessing the overall fit of the logistic regression model. The likelihood ratio test, 

also called log-likelihood test, it is based on - LL2 (-2 times log likelihood). The 
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likelihood ratio statistic is obtained by subtracting the two times log likelihood (

LL2 ) for the final (full) model from the log likelihood for the intercept only 

model. This log likelihood-ratio test uses the ratio of the maximized value of the 

likelihood function for the intercept only model 
0

L over the maximized value of the 

likelihood function for the full model
1

L . The likelihood test statistic is given by 

      ][2loglog2log2
1010

1

02
LLLLLL
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L
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                        (2.6) 

 Where 
0

LL the log likelihood value of the model which is have the intercept term 

only and 
1

LL is the log likelihood value of the full model. The likelihood ratio 

statistic has a chi-square distribution and it tests the null hypothesis says all logistic 

regression coefficients except the constant are zero. The degrees of freedom are 

obtained by differencing the number of parameters in the both model. It compared 

with chi-square value at the difference between degree of freedom of both model. 

And p-value indicates that the probability of the deviance based on chi-square is 

greater than the tabulated chi-square. If p-value is less than 5 % level of significant 

leads the rejection of the null hypothesis that all the predictor effects are zero. 

When this likelihood test is significant, at least one of the predictors is significantly 

related to the response variable.  

An alternative method for checking goodness of fit for individual binary data has 

been proposed by Hosmer and Lemeshow (2000) given below.  

2.4.3.2. The Hosmer-Lemeshow Test Procedure 

The test statistic for this test procedure is formulated under the null hypotheses that 

the model fits the data, and the alternative is that the model does not fit. The test 

statistic is constructed by grouping the data set into roughly 10 (g) groups (Hosmer 

and Lemeshow, 2000). The groups are formed by ordering the existing data by the 
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level of their predicted probabilities. So the data are first ordered from least likely 

to have the event to most likely for the event. Then g (often 10) roughly equal size 

groups are formed. From each group the observed and expected numbers of events 

are computed for each group. The test statistic is 

 




g

k

k

kk

v

EO
C

1

2
)(

ˆ

                       (2.7) 

Where,
k

O and
k

E are the observed and expected number of events in the th
k group, 

and
k

v  is a variance correction factor for the th
k  group. If the observed number of 

events differs from what is expected by the model, the statistic Ĉ  will be large and 

there will be evidence against the null hypothesis. This statistic has an approximate 

Chi-Squared distribution with (g – 2) degrees of freedom.  

2.4.3.3. The Wald Test 

The Wald statistic is an alternative test which is commonly used to test the 

significance of individual logistic regression coefficients for each independent 

variable. The hypothesis to be tested is: kjHvsH
jAj

...,,2,10:0:
0

  at 

level of significance. 

The Wald test statistic, Z, for this hypothesis is 

 
 1

ˆ

ˆ
2

2

2
























j

j

SE
Z

              (2.8) 

The Wald test is one of a number of ways of testing whether the parameters 

associated with a group of explanatory variables are zero. If the Wald test is 

significant for a particular explanatory variable then we would conclude that the 
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parameters associated with these variables are not zero so that the variables should 

be included in the model otherwise the explanatory variables can be omitted from 

the model (Agresti, 1990).

 

2.4.3.4. R- Square Statistic 

A number of measures have been proposed in logistic regression as an analog to R-

square in multiple linear regressions.  In logistic regression, there is no true 2
R  

value as there is in OLS regression. The maximum value that the Cox & Snell R-

square
 
attains is less than 1. The Nagelkerke R-square

 
is an adjusted version of the 

Cox & Snell R-square
 
and covers the full range from 0 to 1, and therefore it is 

often preferred (Bewick and Jonathan, 2005). 

In SPSS, there are two modified versions of this basic idea, one developed by Cox 

& Snell and the other developed by Nagelkerke (Long, 1997) and (O’Connel, 

2006). The Cox and Snell R-square is computed as follows: 

Cox & Snell Pseudo- 2
R        

n

full

null

LL

LL
R

/2

2

2

2
1


















  

Because this R-squared value cannot reach 1.0, Nagelkerke modified it. The 

correction increases the Cox and Snell version to make 1.0 a possible value for R-

squared. 

Nagelkerke Pseudo- 2
R            

 
n

null

n

full

null

LL

LL

LL

R
/2

/2

2

21

2

2
1






















  

 Where: 
null

LL  is log-likelihoods of the null model or the logistic model with just 

the constant 
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full
LL   is log-likelihoods of the full logistic regression model or the logistic 

regression  model contains all the k predictors. 

2.4.4. Checking Multicollinearity, Outliners and Influential Cases  

Multicollinearity Diagnostics  

First, one has to check for multicollinearity before analyzing the data using binary 

logistic regression. Tolerance and VIF scores are not available through the logistic 

regression command, one way to compute these values is through the linear 

regression command, using one of the continuous variables assumed to be an 

indicator of under-five child mortality as the dependent variable and the rest of 

indicators including the response variables (under-five child mortality) as 

independent variables (Leech, 2005).  

Similarly, in the correlation matrix for this case, it is not so easy to spot where the 

multicollinearity is? Another drawback with the correlation matrix is that 

multicollinearity between one variable with a combination of variables, will not be 

shown. A simple but sometimes subjective technique is to inspect the magnitude of 

the standard error (SE) of each variable. The SEs is very large implying 

multicollinearity exists and the model is not statistically stable. To “solve” this 

issue, start omitting the variable with high collinearity (Chan, 2004). There is no 

fixed criterion on how small the SE should be but it is a matter of judgment. 

However, correlation matrix has drawback it is better way to identify correlated 

variables in the study. To confirm multicollinearity diagnosis, it better to drop 

relatively correlated variables from the analysis. 
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2.5. Multilevel Logistic Regression Model 

Before going to multilevel modeling, ones needed to go beyond the classical setup 

of a data Y and a matrix of predictors X stated in equation (2.2). The multilevel 

data structures with an observational study of the impacts of each indicators on 

under-five child mortality. The treatment is at the groups (region) level, but the 

outcome is measured on individual families.  

The fact that the regional states in Ethiopia had a variety of environmental factors, 

health service provider, level of education of the people living  in the community, 

level of educated family, access to safe drinking water, sanitation and different  

infrastructures to encourage the reduction of under-five child mortality at their 

region and national level. Indeed, not only regional-level differentials but also 

there are the individual-level factors attributed for under-five child mortality in 

addition to demographic factors of children as well. This differential among 

individual, region, national and also through continent level indicated the facts 

that, the rate of child mortality in developed and developing country has different 

structure. But, so many studies in single level (eliminate those variation across 

regional states) regarding under-five child mortality in the world wide and at 

national level that invites errors. In fact, there is clear heterogeneity among the 

individual and regional-level characteristics that leads to variations while clustered 

those factors at single level.   

In the present study, multilevel binary logistic regression model was adopted to 

model under-five child mortality variations among regional states of Ethiopia. This 

study, started to built multilevel modelling of the variations for the impacts of 

individual and community (regional)-level on under-five child mortality starting 

from empty, random intercept and random coefficient binary logistic regression 
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model as discussed as follows. First, ones better to check where there is 

heterogeneity proportion of under-five child mortality between regions in Ethiopia 

before going to multilevel analysis. 

2.5.1. Heterogeneity Proportion  

The basic data structure of the two-level regression is a collection of N groups 

(‘units at two levels’ or ‘regions’), with in group 𝑗, (𝑗 = 1, 2, … , 𝑁) random sample 

of 
j

n  level-one units (‘individual’ or ‘number of under-five children living in the 

region j’). 

Consider the outcome variable in equation (2.1), 
ij

Y  (i = 1, 2, … , nj;  j =

1, 2, … , N) and denoted by for level-one unit 𝑖 nested in level-two group j.  

And the total sample size is 




N

j

j
nM

1

. If one does not take explanatory variables 

into account, the probability of success is assumed constant in each group (Snijders 

and Bosker, 1999). Let the probability of having under-five child death in region j 

be denoted by
j

  . The dichotomous outcome variable for the child 𝑖 in region j, 
ij

Y  

can be expressed as the sum of the probability in region 𝑗, 
j

  (the average 

proportion of i levels in region j, 
jij

YE )( ) plus some individual dependent 

residual, that is 

ijjij
y  

                                                   (2.9) 

The residual term is assumed to have mean zero and variance, 

   
jjij

  1var
 

Since the outcome variable is coded 0 and 1, the group (region) sample average is 

the proportion of successes in group j given by: 
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




jn

i

ij

j

j
Y

n 1

1
̂  

Where: 
j

̂ - is an estimate for the group-dependent probability
j

 . Similarly, the 

overall sample average is the overall proportion of successes,  and is given 

by: 

 
 



N

j

n

i

ij

j

Y
M 1 1

1


 

2.5.2. Test of Heterogeneity Proportion 

For the proper application of multilevel analysis the first logical step is to test 

heterogeneity of proportions between groups. Here we present two commonly used 

test statistics that are used to check for heterogeneity (Snijders and Bosker, 1999). 

To test whether there are indeed systematic differences between the groups, the 

well known Chi-Square test for contingency table can be used. In this case the Chi-

Square test statistic is:  

 

 
 1~

ˆ1ˆ

ˆˆ
2

2

1

2





 



Nn
j

N

j

j





                                (2.10) 

It can be tested a chi-square distribution with 𝑁 − 1 degrees of freedom. This chi-

squared distribution is an approximation valid if the expected number of success

 
jj

n   (and of failures   
jj

n 1  in each group all are at least one while 80 percent 

of them are at least 5 (Agresti, 1990). 

2.5.3. Estimations of Between and Within Group Variance 

The true variance between the group dependent probabilities (Snijders and Bosker, 

1999), i.e. the population values of
j

 , is given by: 

n

S
S

within

between ~
ˆ

2

22


                                                             (2.11)
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Where: n
~ is defined as: 




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
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

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






N
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S

1

2
1

1


, 

              
Where: 2

  is given in equation (3.10)  

2.5.4. The Empty Model 

The empty two-level model for a dichotomous outcome variable refers to a 

population of groups (level-two units) and specifies the probability distribution for 

group-dependent probabilities 
j

  (probability of having th
i  child in th

j  group 

(region) died before five year of age) then, consider equation (2.9) without taking 

further explanatory variables into account. We focus on the model that specifies 

the transformed probabilities f (
j

 ) to have a normal distribution. This is 

expressed, for a general link function f ( ), by the formula 

 
ojj

Uf 
0

  

Where f (
j

 ) - is the population average of the transformed probabilities 
o

 and 
oj

U  

is the random deviation from this average for group j. If f ( ) is the logit function, 

then f (
j

 ) is just the log-odds for group j. Thus, for the logit link function, the log-

odds have a normal distribution in the population of groups, which is expressed by: 

 
ojj

ULogit 
0

  

For the deviations 
oj

U  it is assumed that they are independent random variables 

with a normal distribution with mean zero and variance 2

0
 . This model does not 

include a separate parameter for the individual level variance (Snijders and Bosker, 

1999). This is because the individual level residual variance of the 
ij

y  (death or 
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alive of under-five children follows Bernoulli distribution directly from the 

probability of having under-five child death (
j

 ) which is given by: 

   
jjij

  1var  

Denote by
o

  the probability corresponding to the average value
o

  , as defined by 

 
oo

f    

For the logit function, the so-called logistic transformation of
o

 , is defined by 

 
 

 
o

o

oo
Logit






exp1

exp




                               (2.12) 

Because of the non-linear nature of the logit link function, there is no a simple 

relation between the variance of probabilities and the variance of the deviations
oj

U  

(Snijders and Bosker, 1999). According to Snijders and Bosker (1999) there is an 

approximate formula, however, valid when the variances are small. The 

approximate relation (valid for small 2

o
 ) between the population variance is: 

 
  

2'

2

var

o

o

j

f 


   

For the logit function, this yields: 

     22
1var

oooj
   

Note that an estimate of population variance  
j

var  can be obtained by replacing 

sample estimates of
o

  and 2

o
 .   

2.5.5. Random Intercept Binary Logistic Regression Model 

With grouped data, a regression that includes indicators for groups is called a 

varying-intercept model because it can be interpreted as a model with a different 

intercept within each group (Gelman and Hill, 2006). In this case the random 

intercept model is consider only random effect of each indicators of under-five 
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child mortality meaning that the region differ with respect to the average value of 

under-five child death , but there is no different relation between  indicators of 

under-five child mortality among groups (regional states). 

A assume that X is predictor’s data matrix denoted by:  khX
h

...,,2,1,   these 

variables are denoted by with their values indicated by hij
x

 
(Snijders and Bosker, 

1999). Some or all of those variables could be level one variables, the success 

probability is not necessarily the same for all individual in a given group (region). 

From the above probability of having under-five child death depend on indicators 

was denoted by
j

 .  The outcome variable is split into an expected value and 

residual as in equation (2.9). 

Then, random intercept model expresses the log-odds, i.e. the logit of
ij

 , is the sum 

of a linear function of all indicators of under-five child mortality is given as: 

  




k

h

hijhojkijkijijojij xxxxLogit

1

2211
... 

         (2.13)
 

Where, logit(
ij

 )
  

does not include a level-one residual because it is an equation for 

the probability of having under-five child death (
ij

 )
 
rather than for the outcome

ij
y

. 

- 
oj

 is assumed to vary randomly and is given by the sum of an average 

intercept
o

 and group (region) dependent deviations 
oj

U
 
 is given: 

By replacing ojooj
U 

 
in equation (2.13) 

We have: 

 
ojhij

k

h

hoij
ULogit x  

1

  
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Or
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
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exp1
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                    (2.14)

 

Where, 
h

 - is a unit difference between the 𝑋ℎvalues of two individuals in the 

same group is associated with a difference of
h

  in their log-odds, or equivalently, 

a ratio of  
h

exp  in their odds. 

oj
U - is random part of the model and It is assumed that they are mutually 

independent and normally distributed with mean zero and variance 2

o
 . 

2.5.6. Random Slope Binary Logistic Regression Model 

The multilevel modeling strategy accommodates the hierarchical nature of the 

DHS data and corrects the estimated standard errors to allow for clustering of 

observations within units (Goldstein, 2003). A significant random effect may 

represent factors influencing the outcome variable that cannot be quantified in a 

large-scale social survey. A random effects model thus provides a mechanism for 

estimating the degree of correlation in the outcome that exists at the region level, 

while also controlling a range of all indicators may potentially influence the 

outcome.  

The intercepts
oj

 as well as the regression coefficients, or slopes,
j1

  are group 

(region)    dependent. These group dependent coefficients can be split into an 

average coefficient and the group dependent deviation: 

ojooj
U   

jj
U

111
   

Thus, by substituting in equation (3.13) then, logit( )(
ij

 )
 
 is given as: 
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     
ijjojijoijjojoij

XUUXXUULogit
1111111

               

(2.15)         

 Now, we have two random effects at group level, the random intercept 
oj

U and the 

random slope
j

U
1

. It assumed that both random effects have mean zero. And the 

variances are denoted by 2

o
 , 2

1
  and their covariance is 2

1o
 . 

       Where, o
  - is the average intercept of the response variable. 

                  1
  - is fixed regression coefficient given explanatory variable

1
X . 

                
0

U  - is the random coefficient in the model. 

               
ijo

XUU
11

  - is the random part of the model can be considered as 

interaction by group and predictors (X). 

The two random effects that characterized group (region) 
oj

U and
 j

U
1

 are 

correlated. Further, it is assumed that, for different groups, the pairs of random 

 
ijoj

UU , effects are independent and identically distributed. Thus, the variances and 

covariance of the level-two random effects are  
ijoj

UU ,  denoted by: 

 

 

  2

11

2

1111

2

,cov

var

var

ojoj

j

ooooj

UU

U

U













 

Now, we are going to extend the above single explanatory model by including 

more explanatory variable that has random effects on outcome variables. Suppose 

that there are k level-one explanatory variables
k

XXX ...,,,
21

, and consider the 

model where all predictor variables have varying slopes and random intercept.  

That is: 

khforUUU
hjhhjjjojooj

...,,2,1,...,,,
111

  , then we have: 

                          

       
hijhjhijjojoij

XUXUULogit   ....
111
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
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                                      (2.16)
 

Where, 




k

h

hijho
X

1

 - is fixed part of the model and 

            




k

h

hijhjo
XUU

1

- is the random part of the model 

           hjjoj
UUU ...,,,

1
-  are assumed to be independent between groups but may be

 

correlated within groups. So the components of the vector 
hjjoj

UUU ...,,,
1

are 

independently distributed as a multivariate normal distribution with zero mean 

vector and variances and co-variances   given by: 
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2.5.7. Maximum Likelihood Estimation via Quadrature  

The most common methods for estimating the parameter of multilevel logistic 

models are Marginal Quasi Likelihood (Goldstein, 1991; Goldstein and Rasbash, 

1996), Penalized Quasi Likelihood (Laird, 1978; Breslow and Clayton, 1993). The 

numerical integrations approach and Laplace approximation seem to produce 

statistically more satisfactory estimates than MQL and PQL approaches.  

The marginal likelihood is the joint probability of all observed responses given the 

observed covariates. For linear mixed models, this marginal likelihood can be 

evaluated and maximized relatively easily (Rabe-Hesketh and Skrondal, 

2012). However, in generalized linear mixed models, the marginal likelihood does 
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not have a closed form and must be evaluated by approximate methods. Now, we 

will construct this marginal likelihood step by step for a random intercept logistic 

regression model with covariates
j

X . The responses are conditionally independent 

given the random intercept 
j

U and the covariates .
j

X Therefore, the joint probability 

of all the responses  
jij

ny .,..,1  for cluster j given the random intercept and 

covariate is simply the product of the conditional probabilities of the individual 

responses: 

   
 

  
 
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exp1
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as specified by the logistic regression model. To obtain the marginal joint 

probability of the responses, not conditioning on the random intercept 
j

U  (but still 

on the covariate
j

X ), we integrate out the random intercept. 

 

     
jojjjjnijjjnij

duUUXyyPXyyP
jj 

2
,0;,|.,..,|.,..,               (2.17) 

 

Where,  2
,0;

oj
U   is the normal density of 

j
U with mean 0 and variance 2

0
 . 

Unfortunately, this integral does not have a closed-form expression. The marginal 

likelihood is just the joint probability of all responses for all clusters. Because the 

clusters are mutually independent, this is given by the product of the marginal joint 

probabilities of the responses for the individual clusters (Rabe-Hesketh and 

Skrondal, 2012).  
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This marginal likelihood is viewed as a function of the parameters
o

 , β, and 2

0
  

(with the observed responses treated as given). The parameters are estimated by 

finding the values of
o

 , β, and 2

0
  that yield the largest likelihood. The search for 

the maximum is iterative, beginning with some initial guesses or starting values for 

the parameters and updating these step by step until the maximum is reached, 

typically using a Newton–Raphson or expectation-maximization (EM) algorithm. 

The integral over
j

U  in (2.14) can be approximated by a sum of R terms with r
e  

substituted for 
j

U  and the normal density replaced by a weight r
w  for the th

r   term, 

𝑟 = 1, 2, … , 𝑅: 

   




R

r

rrjjjnij

N

j

jjnij
weUXyyPXyyP

jj

11

,|.,..,|.,..,                  (2.18) 

Where, r
e  and r

w are called Gauss–Hermite quadrature locations and weights, 

respectively. This approximation can be viewed as replacing the continuous 

density of 
j

U  with a discrete distribution with R  possible values of 
j

U  having 

probabilities  
rj

eUP   (Rabe-Hesketh and Skrondal, 2012).  

And the likelihood function for random slope multilevel logistic regression model 

is described as follows. Let the response vector consist of the entire elements
ij

y . 

Assuming that the conditional distribution of
ij

y  given the random effect (
j

U ) are 

independent of each other, the conditional density of y
ij
 is given by: 

   
ijjijuy

BernoulliUyf
jij

~|
|

                                                      (2.19) 

The expected value of the Bernoulli distribution equals
ij

 , after applying the 

specified link function, modeled as a linear function of the covariates. The 
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distributions of the random effects are multivariate normal  ),0~...,,,(
21

Nuuu
N

which are independent draws from multivariate normal distribution.  

The likelihood approach is used to estimate the fixed and the random parameters of 

the model by treating the actual random effect U as nuisance parameters, and work 

with the marginal likelihood function which is given by: 

 
U

dUfUYfL );();|(,                                    (2.20) 

Where,  ;| UYf  is the distributional function for response conditional on the 

random effect. Here  ;
j

Uf  is the distribution function for the random effects. For 

two-level logistic Bernoulli response model, where random effects are assumed to 

be multivariate normal and independent across units, the marginal likelihood 

function is given by: 

   
j

ijij

Uj

j i

y

ij

y

ij
dUfL );()1()(;

1
  


             (2.21)                                                         

  
jjjijij

UX 


 ,exp1
1

 

Where  ;
ij

Uf  is typically assumed to be the multivariate normal density and can 

be written in the form 
jujj

dufup )()(



 

Gauss-Hermite quadrature approximates an integral such as the above as 

q

Q

q

qv

v
wxpdevp 











1

)()(
2

                             (2.22) 

Where 

Q

q qq
wxp

1
)(  is a Gauss-Hermite polynomial evaluated at a series of 

quadrature points indexed by q. This function is then maximized using a suitable 

search procedure over the parameter space.  
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If we consider the model with a single random intercept at level two have:                     

 
 

  
  




2

2
,

exp1

exp

ujj

jij

jij

j
uf

UX

UX
UP 




  

Where   -is the standard normal density. The standard quadrature method selects 

points centered on zero, but 
j

U is not centered at zero and we may therefore need a 

very large number of quadrature points to cover the range. We have therefore 

essentially approximated the posterior density by a normal density with the same 

mean and standard deviation. A solution is to use adaptive quadrature (Goldstein, 

2011). Quadrature methods have been applied successfully to poisson, binomial 

and multinomial and ordered category models and have been implemented in 

software packages (SAS and STATA (xtlogit and xtmelogit). Nevertheless, 

successful quadrature, even with the adaptive method, will often require a large 

number of quadrature points and even in simple cases convergence can be difficult 

to achieve (Lesaffre and Spiessens , 2001). This becomes especially important 

when there are several random coefficients since the quadrature points will now be 

in several dimensions so that the number of points increases geometrically with the 

number of random coefficients. 

2.5.8. Multilevel Binary Logistic Regression Model Comparison  

Deviance based on Chi-square 

The deviance based on chi-square value for two models is obtained as two times 

the difference of log likelihood value of the two models. It is compared with the 

probability of deviance based on chi-square, is greater than critical value 

distributed to chi-squared at the difference between numbers of parameter in two 
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models degree of freedom. If P-value is less than 5% level of significance, 

suggesting that multilevel empty model is significant.  

The basic concept underlying this procedure is to compare the maximum 

likelihood under an assumed model with that of a baseline model. Let
c

L̂  be the 

maximized likelihood under the current model. This statistic cannot be used on its 

own to assess the lack of fit of the current model unless compared with a 

corresponding statistic of an alternative baseline model for the same data. This 

latter model is taken to be a model that fits the data perfectly. Such a model will 

have the same number of unknown parameters as there are observations. The 

model is termed the full or saturated model and the maximized likelihood under it 

is denoted by f
L̂ .  The saturated model does not condense the information in the 

bulk of data into a simple summary, as it is not parsimonious. However, the 

maximum likelihood under this model is an intuitively appealing reference by 

which a corresponding value of a given model can be compared to assess the 

adequacy of the given model.  

Let the statistic D, be defined as:  

 

   
fcfc

LLLLD ˆlogˆlog2ˆ|ˆlog2                   (2.23) 

Large values of D are encountered when
c

L̂   is small relative to f
L̂ , indicating that 

the current model is a poor one. On the other hand, small values of D are obtained 

when
c

L̂   is similar to f
L̂ , indicating that the current model is a good one. The 

statistic D has chi-square distribution at degree of freedom equals to the difference 

between the number of parameter in full model and current model therefore, it 
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measures the extent to which the current model deviates from the full model and is 

termed the deviance.   

3.  Results and Discussions 

 In this study data from 10156 

under-five children are 

included. 

 About 6.9% of under-five 

children in Ethiopia are died 

before five years of age. 

 Based on region of residence 

under-five child mortality rate 

2.57% was the minimum in 

Addis Ababa. 

 The maximum under-five child 

mortality rate was about 8.49% 

in Benishangul-Gumuz region. 

 Under-five child mortality rates 

were 2.26% and 7.23%, for 

children having higher 

educational level and no 

educated mothers respectively.  

 The rates of under-five child 

mortality were 8.11% and 

5.91%, for children having 

mother age at birth 15-24 and 

25-34 respectively. 

 The rates of under-five child 

mortality were 4.46% and 

35.7%, for children with birth 

index 1 and 4 respectively.  

 The rates of under-five child 

mortality were 6.14% and 

9.76% for children with very 

small and large size at birth 

respectively. 
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Binary Logistic Regression Analysis 

 The likelihood ratio test of 

overall model indicated that, 

there were significant 

relationships between variables 

which significant associated 

with under-five child mortality. 

 The Nagelkerke R square is 

found 25.6% indicating that, 

those variables that had 

significant association with 

under-five child mortality 

included in binary logistic 

regression analysis are useful in 

predicting under-five child 

mortality and to indicate its 

variations among regional 

states. 

 Hosmer and Lemeshow test is 

found to be statistically 

insignificant. 

i.e. Do not reject null 

hypothesis of the model fits the 

data very well. 

 It indicates that binary logistic 

regression model of under-five 

child mortality fits the 

Ethiopian Demographic and 

Health data very well.  
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Results of Binary Logistic 

Regression Analysis of Under-five 

Child Mortality 

 Regions, Mother educational 

level, birth index, child size at birth, 

mother age at birth, type of birth and 

breastfeeding status have significant 

impacts on under-five child mortality. 

 The odds of child living in all 

regional states except in Dire Dawa, 

being died before five years of age are 

higher than that of living in Addis 

Ababa. 

 The odds of child having higher 

educated mothers being died before 

five years of age, is reduced by 68.4% 

as compared to child having none 

educated mothers. The odds of 

children with birth index 2, 3 and 4 

being died before five years of age are 

higher as compared to children with 

birth index 1. 

 The odds of being died before 

five years of age are reduced by 

35.3% for children having mothers 

with age at birth between 25 and 34 as 

compared to that having mothers age 

at birth between 15 and 24. 

 The odds of being died before 

five years of age for children with 

multiple births are higher than that of 

single birth. 

 The odds of being died before 

five years of age for breastfed child 

are reduced by 96.7% as compared to 

that of never breastfed. 
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Variables β S.E. Wald df P-value Exp(β) 

95% CI. for 

Exp(β) 

Lower Upper 

Region (ref: Addis Ababa) 30.57 9 0.000* 
  

Tigray 1.122 0.40 7.67 1 0.006* 3.071 1.388 6.795 

Affar 1.451 0.40 12.95 1 0.000* 4.267 1.936 9.402 

Amhara 1.2 0.40 8.762 1 0.003* 3.322 1.5 7.355 

Oromiya 0.934 0.4 5.458 1 0.019* 2.545 1.162 5.571 

Benishangul-

Gumuz 
1.221 0.41 8.881 1 0.003* 3.39 1.519 7.568 

SNNPR 1.304 0.4 10.64 1 0.001* 3.686 1.683 8.071 

Gambela 0.819 0.41 3.891 1 0.049* 2.269 1.005 5.12 

Harari 0.921 0.42 4.87 1 0.027* 2.512 1.109 5.692 

Dire Dawa 0.642 0.42 2.306 1 0.129 1.901 0.83 4.353 

Mother Education  

(ref: No Education) 
5.874 3 0.118 

  

Primary -0.05 0.11 0.198 1 0.657 0.951 0.764 1.185 

Secondary -0.49 0.33 2.312 1 0.128 0.609 0.321 1.154 

Higher -1.15 0.57 4.107 1 0.043* 0.316 0.103 0.963 

Wealth index (ref: Lowest) 2.71 4 0.608   

Second 0.014 0.13 0.011 1 0.917 1.014 0.784 1.31 

Middle -0.04 0.14 0.077 1 0.781 0.963 0.736 1.259 

Fourth -0.21 0.15 2.002 1 0.157 0.813 0.61 1.083 

Highest 0.02 0.21 0.009 1 0.925 1.02 0.676 1.54 

Birth index 

(ref: Child with index 1) 
112.5 3 0.000* 

  

Child 2 0.714 0.09 55.49 1 0.000* 2.043 1.693 2.465 

Child 3 1.226 0.16 56.05 1 0.000* 3.408 2.472 4.698 

Child 4 2.68 0.44 37.31 1 0.000* 14.58 6.171 34.447 

Cont… 
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Child Size at Birth (ref: Vey 

Small) 
38.57 4 0.000* 

  

Very larger 0.502 0.14 12.69 1 0.000* 1.653 1.254 2.179 

Larger than 

average 
0.579 0.15 14.94 1 0.000* 1.785 1.331 2.394 

Average -0.02 0.13 0.017 1 0.896 0.984 0.768 1.259 

Smaller than 

average 
-0.17 0.19 0.807 1 0.369 0.84 0.574 1.229 

Mother Age at birth (ref: 15-24) 22.03 3 0.000*   

25-34 -0.43 0.11 15.62 1 0.000* 0.647 0.521 0.803 

35-44 -0.11 0.13 0.79 1 0.374 0.893 0.696 1.146 

44+ 0.239 0.26 0.845 1 0.358 1.269 0.763 2.111 

Type of birth (ref: Single) 

Multiple 1.473 0.17 78.11 1 0.000* 4.363 3.147 6.048 

Breastfeeding status (ref: Never breastfed) 

Breastfed -3.41 0.13 670.0 1 0.000* 0.033 0.025 0.043 

Place of residence (ref: Rural) 

Urban 0.114 0.21 0.291 1 0.59 1.12 0.741 1.694 

 

Constant -0.93 0.42 4.83 1 0.028* 0.394   

(* Significant at 5% level) and (ref - is reference category)   

Multilevel Binary Logistic 

Regression Analysis 

Chi-square Test of heterogeneity 

 It indicates that there is 

heterogeneity of under-five child 

mortality between regional states. 

Result of Empty Model  

 It indicated that under-five child 

mortality variations among regional 

states of Ethiopia was non-zero.  

 And about 1.156% of the variance 

in under-five child mortality at 

individual level could be attributed to 

differences across regional states. 
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U5CM β Std. Err. Z P>z [95% CI. Interval] 

Fixed effect Lower Upper 

β0 = Intercept -2.641 0.071 -33.8 0.000* -2.79 -2.488 

Random part 

Sigma (δ
2

uo) 

=Variance 
0.1962 0.086 2.27 0.023* 0.083 0.465 

Intra-region correlation coefficient  

ICC (Rho (
u

 )) 0.0116 0.01 4.81 0.028* 0.002 0.062 

Likelihood-ratio test of rho=0: chibar2(01) =     4.81 Prob >= chibar2 = 0.014* 

(* Significant at 5%) and (ICC - intra-region correlation coefficient)    

 

Random Intercept Binary Logistic 

Regression Analysis 

 The variance of the random 

component related to intercept term is 

found to be significant.  

 Indicating that, under-five child 

mortality variations among regional 

states of Ethiopia was non-zero. 

 

 Mothers educational level, birth 

index, child size at birth, mother age 

at birth, type of birth and 

breastfeeding status have significant 

impacts and contribution to under-five 

child mortality variations among 

regional states of Ethiopia. 

Variables Β Std. Err. Z P>z Odds [95% CI] 

Fixed part  Lower Upper  

Mother Education Level (ref: No education) 

Primary -0.063 0.111 -0.58 0.565 0.938 0.754 1.166 

Secondary -0.546 0.323 -1.69 0.091 0.578 0.307 1.09 

Higher -1.31 0.571 -2.29 0.022* 0.269 0.088 0.826 

Wealth index (ref: Lowest) 

Second lowest 0.001 0.129 0.01 0.992 1 0.776 1.29 

Middle -0.058 0.135 -0.43 0.665 0.943 0.723 1.229 

Fourth -0.219 0.144 -1.52 0.129 0.8 0.604 1.066 

Higher -0.042 0.209 -0.2 0.84 0.96 0.635 1.446 

Cont... 
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Birth index (ref: Child with index 1) 

Child 2 0.716 0.096 7.48 0.000* 2.046 1.696 2.468 

Child 3 1.222 0.163 7.49 0.000* 3.396 2.466 4.677 

Child 4 2.669 0.437 6.1 0.000* 14.435 6.122 34.037 

Child size at birth (ref: Very Smaller) 

Very larger 0.492 0.14 3.51 0.000* 1.636 1.24 2.154 

Larger than 

average 
0.565 0.149 3.79 0.000* 1.759 1.313 2.357 

Average -0.015 0.125 -0.12 0.906 0.985 0.77 1.26 

Smaller than 

average 
-0.189 0.194 -0.97 0.331 0.827 0.565 1.212 

Month age at birth (ref: 15 up to 24) 

25-34 -0.44 0.109 -4.01 0.000* 0.643 0.518 0.798 

35-44 -0.113 0.126 -0.9 0.369 0.892 0.696 1.144 

44+ 0.24 0.258 0.93 0.353 1.271 0.765 2.112 

Type of Birth (ref: Single) 

Multiple 1.463 0.166 8.82 0.000* 4.319 3.12 5.979 

Breastfeeding status (ref: Never breastfed) 

Breastfed -3.384 0.13 -25.8 0.000* 0.034 0.026 0.044 

Type of place of residence (ref: Rural) 

Urban 0.021 0.213 0.1 0.92 1.022 0.672 1.551 

β0 = Intercept 0.619 0.206 3 0.003* 
 

Random part  

Sigma (δ
2

ou) 0.218 0.088 2.477 0.013* 

 

0.098 0.485 

ICC (Rho (
u

 )) 0.014 0.011 7.18 0.008* 0.003 0.066 

(* Significant at 5%)      

( ref - is reference category)  

 (ICC - intra-region correlation coefficient)    
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Multilevel Model Comparison 

 Based on deviance based on 

Chi-square random intercept 

binary logistic regression 

model was the best fit model as 

compared to empty and random 

slope multilevel binary logistic 

regression models. 

 The variations of under-five 

child mortality among regional 

states of Ethiopia were 

accounted only in the intercept 

term. 

 However, those significant 

variables did not show any 

underline variations of under-

five child mortality among 

regional states.  

 The under-five child mortality 

variations among regional 

states were non-zero and its 

accounted by random intercept 

term only. 

 

 Model comparison 

statistics 
Empty model 

Random 

intercept 

Random 

coefficient model 

-2*log likelihood 5111.23 4054.82 4053.75 

Deviance based on Chi – 

square 
4.8138 1056.41 1.074 

Degree of freedom (df) 2 22 27 

P-value 0.0282* 0.000* 0.956 

AIC 5115.23 4098.82 4107.75 

BIC 5129.68 4257.79 4302.84 

(* Significant at 5% level) 
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4. Conclusions 

 Under-five child mortality was 

significantly associated with 

geographical region.  

 The probability of under-five 

children living in all regional states 

except Dire Dawa, were more likely 

to die before five years of age than 

that of living in Addis Ababa.  

 Under-five child mortality 

variations among regional states were 

accounted by the random intercept 

terms of the model.  

 Mother educational level, birth 

index, child size at birth, mother age 

at birth, type of birth and 

breastfeeding status had significant 

impact and contribution to under-five 

child mortality variations among 

regional states. 

 The probability of an under-five 

child having mother with higher 

educational level, being died before 

five years of age was less than that 

having mother with no education. 

 The probability of a child with 

higher birth index, being dying before 

five years of age was higher than that 

with birth index 1.  

 The probability of under-five child 

with larger than average size at birth, 

was more likely to die before five 

years of age than that with very small 

size at birth. 

 The probability of under-five child 

born from mother with age at birth 

from 25 up to 34 was less likely to die 

before five years of age than that born 

from mother with age at birth from 15 

up to 24.  

 The probability of child with 

multiple births was more likely to die 

before five years of age than under-

five child with single birth. 

 

5. Recommendations  

 Supporting mother’s to educate 

themselves.  

 Preferable if households have less 

birth index or less birth within five 

years. 

 Improvement in maternal health 

care service will be appropriate to 

control larger size of child at birth.  
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 Let mothers preferable to give 

birth at ages between 25 up to 34. 

 Multiple born children need 

professional cares and special 

attention of their parents. 

 Mothers have to develop the 

culture of breastfeeding of children.  

 Further studies should be 

conducted to identify others factors 

that affect and contribute to under-

five child mortality variations among 

regions.  

 Multilevel models are appropriate 

method that investigates the effects of 

demographic, socio-economic and 

environmental factors on under-five 

child mortality and to take into 

account its variations among regional 

states.  
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