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Abstract 
The appropriateness of mortality models varies from country to country depending on the 
prevailing parameter of the country. The deficiencies are sometimes introduced via model 
misspecification by estimating parameters that are not peculiar to a particular country, limited 
data for countries lacking adequate historical mortality rates for model building and through 
unforeseen variation like wars and epidemics.  The aim of this paper is to extend stochastic 
mortality model to capture mortality situation in two populations with application to limited data 
situation. Data were generated from binomial distribution using Monte-carlo simulations; the 
mortality rate for age 0 to 100years and 3-year points to capture the limited data condition and 
the model were applied to Nigeria mortality dataset. Bayesian Information Criterion (BIC), 
Deviance and Log-likelihood were used to assess the performance of the models. The result from 
the parameter estimates shows that AP model capture the age effect better compared to all other 
models. Though ASPC has a better fitting result compared to AP, but AP estimates the age effect 
better. The period effects were not adequately captured by all the models due to fewer number 
years’ data that is available. The confidence intervals of the forecast from the ARIMA models 
were very wide indicating that the future pattern of mortality is not stable but over time might 
come to equilibrium while the cohort effect estimate from the Nigeria was not significant. The 
findings of from this study have shown the appropriate of AP and ASPC model in modeling 
mortality in two-population situation.  
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1. Introduction 

The study of mortality relates to the survival and death of individuals within a particular 

population. The future development of human mortality, together with its wider implications, has 

attracted increasing interest in recent decades. Modeling mortality data has been the major focus 

of many authors in actuarial science. The major concern of most authors within the context of 

mortality is to establish a model that will adequately fits the historical data. In recent years a 

limited number of studies have explored the use of multi-population models for mortality 

modeling (see for example [Cairns et al., 2011b], [Cairns et al., 2011c] and [Lee and Li, 2005]). 

These references jointly model mortality rates from multiple populations, accounting for 

interactions between both populations. This is in line with ‘biological reasonableness’ that 

multiple populations do not necessarily behave independently of each other, as is the case in 

single-population mortality models. The aim of this paper therefore is to extend the univariate 

model proposed by Bamidele et al (2014) to bivariate case.  

The rest of the paper is structured as follows; section 2 reviews existing literature, section 3 

explores multi-population models, while the fitting methodology, stimulation study, result and 

discussion were presented in section 4,5,6 and 7 respectively.  

 

2. Literature Review 
 

As noted by most authors, the following literature guides on stochastic models that are often used 

for modeling mortality force  or mortality risks ; Lee and Carter (1992), Renshaw and 

Haberman (2006), Cairns et al (2006a), Currie et al (2004) and Currie (2006).  

2.1 Stochastic Mortality Models 

Stochastic mortality models are often used to models mortality force  or mortality risk . 

The mortality rate or mortality force is often defines as; 

                                                                              (1) 

Where  is the number of death at age x during calendar year t and   is the mid-year 

population of age x during calendar year t. 



The initial mortality rate  is the probability that a person aged x dies within the next year. The 

different mortality measures are linked by the following approximation: 

                                               (2) 

Based on fact that some of the existing models considered in literatures suffers from one problem 

or another, which well means there is no universal model to model mortality force or risk as the 

case may be. Bamidele et al (2014) proposed the following models considering its simplicity, 

easy estimation and relevant parameter in the target population.  

Age-Period model (AP)                      

                                                (3) 

Where  and  is defined as the age and period effect. The basis for the above model is that in 

the absence of adequate information apriori the estimation, the component of the data structure 

should be the first thing to estimate. The Additional variable  where  is the mean age, 

tends to adjust for the trivial correlation between period and age. Also, as noted by Currie (2013) 

that cohort effects is not independent of age and year of death effects, which thus implies that the 

additional information from cohort is just a linear combination of age and year which might 

introduce collinearity or confounding to the estimation thus making estimation difficult.  

Age Specific-Period Cohort Model (APSC) 

                                                               (4) 

All the models considered in this paper except CBD suffers from identifiability problem, thus 

estimation of the models considered depends on the following constraints; 

                                              (5) 

                                                                                (6) 

                                                                                     (7) 

where  runs from 1 (youngest cohort) to  (oldest cohort).  



 
3. Multi-population Mortality Modeling 
 

A multi-population mortality model considers more than one population in a joint mortality 

model. Such models can be used for example to model both male and female Nigeria mortality 

data into one model as well as interactions between both populations. For example we might 

expect some form of correlation between mortality improvements of both populations. Other 

applications of such models are joint models for population and portfolio data, or joint models 

for smokers/non-smokers, or different socio-economic classes in portfolio data.  

3.1 Extension of univariate stochastic mortality models to bivariate 
 

Few researchers have contributed to the subject of two-population stochastic mortality modeling. 

Li and Lee (2005) developed two extensions of the Lee-Carter model for modeling multiple 

populations. The two extensions were subsequently used by Li and Hardy (2011) to quantify the 

population basis risk in an index-based q-forward longevity hedge. Cairns et al. (2011) discussed 

the core hypotheses and desirable criteria for use in constructing two-population mortality 

models. Dowd et al. (2011) proposed a two-population gravity model, in which autoregressive 

processes are used to reduce any increasing spread between each pair of stochastic factors in the 

model back to a constant level and Zhou et al. (2014) investigated the use of different 

multivariate stochastic processes for projecting the stochastic factors in a multi-population 

mortality model. Zhou et al. (2013) introduced a two-population Lee-Carter model with 

transitory jump effects. The mentioned models are meticulously constructed so that they will not 

lead to diverging long-term forecasts, which do not seem to be biologically reasonable.  

Most of the existing two-population mortality models are built on either the Lee-Carter (LC) or 

the Age-Period-Cohort (APC) structure. Nonetheless, these two model structures, which were 

developed many years ago, do not always provide the best fitting and forecasting results. In an 

analysis based on data from the US and EW populations, Cairns et al. (2009) found that Model 

M7 (the Cairns-Blake-Dowd model with cohort and quadratic effects) performs better than the 

LC and APC structures in terms of the Bayesian Information Criterion and the robustness of 

parameter estimates. Similar studies conducted by Cairns et al. (2011) and Dowd et al. (2010a,b) 

also point to the conclusion that the LC and APC structures are not always the most preferred. 

Cairns et al 2011 proposed the bivariate model of Age-period-Cohort Model (APC) for modeling 



two closely related populations. The approach was applied to the England and Wales (EW) Male 

and UK male for ages 65-99. The model is thus; 

 

 

And generally the above model can be extended to  closely related population define as; 

 

The table below summarize the extension of the models considered in this paper to the bivariate 
condition where  

Table 1: The proposed models with respect to their structure and number of constraints that will 
make the model identifiable. 
 

 

 

 

 

 

 

4.Fitting Age-Period-Cohort Models using Poisson GLMs   

Fitting mortality models using Poisson GLM follow the same procedure as in the usual Poisson 

GLMs explained by McCullagh and Nelder (1989), the additional task involved is the addition of 

the constrains to make the models identifiable. The main task is to specify the design matrix  

which is the matrix of the predictors. Here  can be a combination of age effect, period effect 

and cohort effect as the case may be in any of the model. 

Let  be the vectors of observed deaths and central 

exposures; here, the vec operator stacks the columns of a matrix in column order on top of each 

other. It is pertinent to note that with this definition the age suffix varies faster than the year 

suffix in . With the above definition, it’s easier to describe the Poisson GLM fitting 

S/N Model  Structure Constraints 

1.)  AP Model  

 

1*2 

2.)  ASPC Model  

 

3*2 



methodology for the APC model. The fitting procedure implemented in R as explained by Currie 

(2013) was used in estimating the models. Thus suppose 𝜽 is the vector of parameters, the 

maximum likelihood estimator for parameter 𝜽 is; 

 
                                                                  
𝑅 are the constraint matrix for the model and the one used by R. Using the above formulation we 

𝑴𝑳 since the result from R statistical package software assumes MLE framework. Thus 

                                                                      

Using mortality models for forecasting and simulation purposes based on the specific dynamics 

for the stochastic processes ,  and . This was modeled using Box Jenkins 

methodology (Box & Jenkins, 1976) 

 

4.1. Criteria for Assessing the Goodness of Fit of the Models 

The assessments of the models considered in this work were based on the following criteria. 

i. Deviance 

ii. Log-Likelihood 

a. Bayesian Information criterion (BIC) 

ii. Deviance 

The measure of discrepancy in a GLM to assess the goodness of fit of the model to the data is 

called the deviance. Deviance is defined as − 2 times the difference in log-likelihood between the 

current model and a saturated model (i.e. a model that fits the data perfectly). Because the latter 

does not depend on the parameters of the model, minimizing the deviance is the same as 

maximizing the likelihood. Deviance is estimated in different ways for different families within 

GLM.  

The analysis is complicated slightly by the fact that some of the models we consider directly 

model the death rate while others model the mortality rate . In order to ensure that our 

comparison of the different models is carried out in a consistent way, our analyses of the models 

for q(t, x) involve an additional step. First, for a given set of parameters we calculate the q(t, x). 

We then transform these into death rates using the identity  = − log[1 − ]. We can then 



calculate the likelihood for all models consistently based on the values. The equation below 

summarizes the deviance for the Poisson family of GLMs used in this thesis. 

 

Where  is the fitted death for Poisson models 

Log-likelihood 

Log-likelihood is another formal evaluation of the goodness of fit. The log-likelihood of the 

Poisson is given as;   

 

Where  is the estimate of the parameters of the model, a significant increase in the log-

likelihood suggests that a particular model provides a better fits to the historical data. However, 

under the principle of parsimony increase in log-likelihood does not necessarily justify the 

adequacy of a model since increase in model parameters will lead to increase in log-likelihood. 

Therefore, to justify for the extra parameters introduced to a particular model, we use the 

following criterion: 

Bayesian Information Criterion (BIC) (Schwarz, 1978) 

 

Where K is the number of parameters in the model. The intuition for BIC is to adjust for the 

number of parameters and sample size.  

5. Simulation Study 
 
The scheme used under univariate case as described by Bamidele et al (2014) was extended to 

capture bivariate situation. Assuming a starting population size N which is regarded as initial 

exposure to risk size, let  denote the mortality rate for a fixed number of years  and 

varying ages Also, it’s very easy to define  as the probability of 



surviving from age  to . Assuming baseline survival probability of 0.5,   is generated 

as follows; 

1.   =c(seq(0.4,0.5,length=5), seq(0.5,0.01,length=n-5)) 

2.  

3.  

4. =1-  

5. =1-  
 

The sample matrices generated were replicated 1000 times to ensure stability. The model was 

therefore applied to Nigeria mortality data extracted from WHO Global health Observatory Data 

Repository http://apps.who.int/gho/data/view.main.60630?lang=en 

5. Results 
In this section, we present the result from the monte-carlo simulation and the real life data set; 

Nigeria mortality data. The dataset was extracted from R package demography within R the 

statistical software environment (www.cran.org). The data consists of numbers of deaths  and 

the corresponding exposures . The data simulation and analysis was implemented using the 

same software. 

 

 

 

 

 

 

 

 

 

 

 

 

 



5.1 Simulation Case 

Table 1: Model assessment criteria results using the univariate and bivariate method under limited 

data condition:  and  

	  

	  

	  

	  

	  

Gender	  

	  

	  

	  

	  

	  

Model	  

UNIVARIATE	  
	  

BIVARIATE	  

	  

	  

	  

	  

	  

ENP	  

	  

	  

DEVIANCE	  

	  

	  

LogLik	  

	  

	  

BIC	  

	  

	  

	  

DEVIANCE	  

	  

	  

LogLik	  

	  

	  

BIC	  

	  

	  

Male	  

AP	   5575.617	   -‐4549.45	   -‐4882.61	   5575.617	   -‐4549.45	   -‐4882.61	  
104 

ASPC	   5644.006	   -‐4583.64	   -‐5256.37	   5644.005	   -‐4583.64	   -‐5256.37	   210 

	  

	  

Female	  

AP	   5228.494	   -‐4375.66	   -‐4708.82	   5228.494	   -‐4375.66	   -‐4708.82	  
104 

ASPC	   5255.223	   -‐4389.02	   -‐5061.75	   5255.223	   -‐4389.02	   -‐5061.75	  
210 

***	  ENP:	  Effective	  number	  of	  parameters	  

	  

 

 

 

 

 

 

 

 

 



 

Nigeria Mortality Data 

Table 3: Model assessment criteria results using the univariate and bivariate method under limited 

data condition:  and  

	  

	  

	  

	  

	  

Gender	  

	  

	  

	  

	  

	  

Model	  

UNIVARIATE	  
	  

BIVARIATE	  

	  

	  

	  

	  

	  

ENP	  

	  

	  

DEVIANCE	  

	  

	  

LogLik	  

	  

	  

BIC	  

	  

	  

	  

DEVIANCE	  

	  

	  

LogLik	  

	  

	  

BIC	  

	  

	  

Male	  

AP	   1209.804	   -‐884.112	   -‐945.147	   1209.804	   -‐905.444	   -‐966.479	  

25 

ASPC	   202.7759	   -‐380.598	   -‐507.551	   202.7809	   -‐380.6	   -‐500.229	  
210 

	  

	  

Female	  

AP	   1159.911	   -‐860.833	   -‐921.868	   1159.911	   -‐878.749	   -‐939.784	   104 

ASPC	   280.8332	   -‐421.294	   -‐548.246	   280.8379	   -‐421.296	   -‐540.924	  

210 

***	  ENP:	  Effective	  number	  of	  parameters	  

	  

7. Discussion of Results 

This paper has extended univariate model to capture for two-population stochastic models by the 

existing single-population mortality models to their two-population versions. The result of the 

bivariate and univariate for the simulated data revealed that the performance of the two 

procedures are identical with slight improvement in the performance for the bivariate case. 

Similar results were also observed using real life data sets. The parameter estimates for the 

dataset shows that AP model capture the age effect better compared to all other models. Though 



ASPC has a better fitting result compared to AP, but AP estimates the age effect better. The 

period effects were not adequately captured by all the models due to fewer number years’ data 

that is available. The confidence intervals of the forecast from the ARIMA models were very 

wide indicating that the future pattern of mortality is not stable but over time might come to 

equilibrium. The cohort effect estimate from the dataset was not significant. For further study, 

another area to explore is to extend the model to incorporate mortality jumps, which capture 

catastrophic mortality events such as a widespread pandemic and to historical data condition.  

 

Parameter Estimates 
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